File size: 4,944 Bytes
57462b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import cv2
import numpy as np
from PIL import Image
from path import Path
import streamlit as st
from typing import Tuple
from dataloader_iam import Batch
from model import Model, DecoderType
from preprocessor import Preprocessor
from streamlit_drawable_canvas import st_canvas


def get_img_size(line_mode: bool = False) -> Tuple[int, int]:
    """
    Auxiliary method that sets the height and width
    Height is fixed while width is set according to the Model used.
    """
    if line_mode:
        return 256, get_img_height()
    return 128, get_img_height()

def get_img_height() -> int:
    """
    Auxiliary method that sets the height, which is fixed for the Neural Network.
    """
    return 32

def infer(line_mode: bool, model: Model, fn_img: Path) -> None:
    """
    Auxiliary method that does inference using the pretrained models:
    Recognizes text in an image given its path.
    """
    img = cv2.imread(fn_img, cv2.IMREAD_GRAYSCALE)
    assert img is not None

    preprocessor = Preprocessor(get_img_size(line_mode), dynamic_width=True, padding=16)
    img = preprocessor.process_img(img)

    batch = Batch([img], None, 1)
    recognized, probability = model.infer_batch(batch, True)
    return [recognized, probability]

def main():

    #Website properties
    st.set_page_config(
        page_title = "HTR App",
        page_icon = ":pencil:",
        layout = "centered",
        initial_sidebar_state = "auto",
    )

    st.title('HTR Simple Application')
    
    st.markdown("""
    Streamlit Web Interface for Handwritten Text Recognition (HTR), implemented with TensorFlow and trained on the IAM off-line HTR dataset. The model takes images of single words or text lines (multiple words) as input and outputs the recognized text. 
    """, unsafe_allow_html=True)
    
    st.markdown("""
    Predictions can be made using one of two models:
    - [Model 1](https://www.dropbox.com/s/mya8hw6jyzqm0a3/word-model.zip?dl=1) (Trained on Single Word Images) 
    - [Model 2](https://www.dropbox.com/s/7xwkcilho10rthn/line-model.zip?dl=1) (Trained on Text Line Images)    
    """, unsafe_allow_html=True)

    st.subheader('Select a Model, Choose the Arguments and Draw in the box below or Upload an Image to obtain a prediction.')

    #Selectors for the model and decoder
    modelSelect = st.selectbox("Select a Model", ['Single_Model', 'Line_Model'])

    decoderSelect = st.selectbox("Select a Decoder", ['Bestpath', 'Beamsearch', 'Wordbeamsearch'])

    #Mappings (dictionaries) for the model and decoder. Asigns the directory or the DecoderType of the selected option.
    modelMapping = {
        "Single_Model": '../model/word-model',
        "Line_Model": '../model/line-model'
    }

    decoderMapping = {
        'Bestpath': DecoderType.BestPath,
        'Beamsearch': DecoderType.BeamSearch,
        'Wordbeamsearch': DecoderType.WordBeamSearch
    }

    #Slider for pencil width
    strokeWidth = st.slider("Stroke Width: ", 1, 25, 6)

    #Canvas/Text Box for user input. BackGround Color must be white (#FFFFFF) or else text will not be properly recognised.
    inputDrawn = st_canvas(
        fill_color="rgba(255, 165, 0, 0.3)", 
        stroke_width=strokeWidth,
        update_streamlit=True,
        height = 200,
        width = 400,
        drawing_mode='freedraw',
        key="canvas",
        background_color = '#FFFFFF'
    )

    #Buffer for user input (images uploaded from the user's device)
    inputBuffer = st.file_uploader("Upload an Image", type=["png"])

    #Infer Button
    inferBool = st.button("Recognize Word")

    #We start infering once we have the user input and he presses the Infer button.
    if ((inputDrawn.image_data is not None or inputBuffer is not None) and inferBool == True):
        
        #We turn the input into a numpy array
        if inputDrawn.image_data is not None:
            inputArray = np.array(inputDrawn.image_data)
        
        if inputBuffer is not None:
            inputBufferImage = Image.open(inputBuffer)
            inputArray = np.array(inputBufferImage)

        #We turn this array into a .png format and save it. 
        inputImage = Image.fromarray(inputArray.astype('uint8'), 'RGBA')
        inputImage.save('userInput.png')
        #We obtain the model directory and the decoder type from their mapping
        modelDir = modelMapping[modelSelect]
        decoderType = decoderMapping[decoderSelect]

        #Finally, we call the model with this image as attribute and display the Best Candidate and its probability on the Interface
        model = Model(list(open(modelDir + "/charList.txt").read()), modelDir, decoderType, must_restore=True)
        inferedText = infer(modelDir == '../model/line-model', model, 'userInput.png')

        st.write("**Best Candidate: **", inferedText[0][0])
        st.write("**Probability: **", str(inferedText[1][0]*100) + "%")

if __name__ == "__main__":
    main()