File size: 13,505 Bytes
57462b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import sys
from typing import List, Tuple
import tf_keras as keras
import numpy as np
from dataloader_iam import Batch
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_v2_behavior
# Disable eager mode
tf.compat.v1.disable_eager_execution
class DecoderType:
"""
CTC decoder types.
"""
BestPath = 0
BeamSearch = 1
WordBeamSearch = 2
class Model:
"""
Minimalistic TF model for HTR.
"""
def __init__(self,
char_list: List[str],
model_dir: str,
decoder_type: str = DecoderType.BestPath,
must_restore: bool = False,
dump: bool = False) -> None:
"""
Init model: add CNN, RNN and CTC and initialize TF.
"""
self.dump = dump
self.char_list = char_list
self.decoder_type = decoder_type
self.must_restore = must_restore
self.snap_ID = 0
self.model_dir = model_dir
tf.compat.v1.disable_eager_execution()
# Whether to use normalization over a batch or a population
self.is_train = tf.compat.v1.placeholder(tf.bool, name='is_train')
# input image batch
self.input_imgs = tf.compat.v1.placeholder(tf.float32, shape=(None, None, None))
# setup CNN, RNN and CTC
self.setup_cnn()
self.setup_rnn()
self.setup_ctc()
# setup optimizer to train NN
self.batches_trained = 0
self.update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(self.update_ops):
self.optimizer = tf.compat.v1.train.AdamOptimizer().minimize(self.loss)
# initialize TF
self.sess, self.saver = self.setup_tf()
def setup_cnn(self) -> None:
"""
Create CNN layers.
"""
cnn_in4d = tf.expand_dims(input=self.input_imgs, axis=3)
# list of parameters for the layers
kernel_vals = [5, 5, 3, 3, 3]
feature_vals = [1, 32, 64, 128, 128, 256]
stride_vals = pool_vals = [(2, 2), (2, 2), (1, 2), (1, 2), (1, 2)]
num_layers = len(stride_vals)
# create layers
pool = cnn_in4d # input to first CNN layer
for i in range(num_layers):
kernel = tf.Variable(
tf.random.truncated_normal([kernel_vals[i], kernel_vals[i], feature_vals[i], feature_vals[i + 1]],
stddev=0.1))
conv = tf.nn.conv2d(input=pool, filters=kernel, padding='SAME', strides=(1, 1, 1, 1))
conv_norm = tf.keras.layers.BatchNormalization()(conv, training=self.is_train)
relu = tf.nn.relu(conv_norm)
pool = tf.nn.max_pool2d(input=relu, ksize=(1, pool_vals[i][0], pool_vals[i][1], 1),
strides=(1, stride_vals[i][0], stride_vals[i][1], 1), padding='VALID')
self.cnn_out_4d = pool
def setup_rnn(self) -> None:
"""
Create RNN layers.
"""
rnn_in3d = tf.squeeze(self.cnn_out_4d, axis=[2])
# basic cells which is used to build RNN
num_hidden = 256
cells = [tf.compat.v1.nn.rnn_cell.LSTMCell(num_units=num_hidden, state_is_tuple=True) for _ in
range(2)] # 2 layers
# stack basic cells
stacked = tf.compat.v1.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=True)
# bidirectional RNN
# BxTxF -> BxTx2H
(fw, bw), _ = tf.compat.v1.nn.bidirectional_dynamic_rnn(cell_fw=stacked, cell_bw=stacked, inputs=rnn_in3d,
dtype=rnn_in3d.dtype)
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
concat = tf.expand_dims(tf.concat([fw, bw], 2), 2)
# project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
kernel = tf.Variable(tf.random.truncated_normal([1, 1, num_hidden * 2, len(self.char_list) + 1], stddev=0.1))
self.rnn_out_3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'),
axis=[2])
def setup_ctc(self) -> None:
"""
Create CTC loss and decoder.
"""
# BxTxC -> TxBxC
self.ctc_in_3d_tbc = tf.transpose(a=self.rnn_out_3d, perm=[1, 0, 2])
# ground truth text as sparse tensor
self.gt_texts = tf.SparseTensor(tf.compat.v1.placeholder(tf.int64, shape=[None, 2]),
tf.compat.v1.placeholder(tf.int32, [None]),
tf.compat.v1.placeholder(tf.int64, [2]))
# calc loss for batch
self.seq_len = tf.compat.v1.placeholder(tf.int32, [None])
self.loss = tf.reduce_mean(
input_tensor=tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.ctc_in_3d_tbc,
sequence_length=self.seq_len,
ctc_merge_repeated=True))
# calc loss for each element to compute label probability
self.saved_ctc_input = tf.compat.v1.placeholder(tf.float32,
shape=[None, None, len(self.char_list) + 1])
self.loss_per_element = tf.compat.v1.nn.ctc_loss(labels=self.gt_texts, inputs=self.saved_ctc_input,
sequence_length=self.seq_len, ctc_merge_repeated=True)
# best path decoding or beam search decoding
if self.decoder_type == DecoderType.BestPath:
self.decoder = tf.nn.ctc_greedy_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len)
elif self.decoder_type == DecoderType.BeamSearch:
self.decoder = tf.nn.ctc_beam_search_decoder(inputs=self.ctc_in_3d_tbc, sequence_length=self.seq_len,
beam_width=50)
# word beam search decoding (see https://github.com/githubharald/CTCWordBeamSearch)
elif self.decoder_type == DecoderType.WordBeamSearch:
# prepare information about language (dictionary, characters in dataset, characters forming words)
chars = ''.join(self.char_list)
word_chars = open('../model/wordCharList.txt').read().splitlines()[0]
corpus = open('../data/corpus.txt').read()
# decode using the "Words" mode of word beam search
from word_beam_search import WordBeamSearch
self.decoder = WordBeamSearch(50, 'Words', 0.0, corpus.encode('utf8'), chars.encode('utf8'),
word_chars.encode('utf8'))
# the input to the decoder must have softmax already applied
self.wbs_input = tf.nn.softmax(self.ctc_in_3d_tbc, axis=2)
def setup_tf(self) -> Tuple[tf.compat.v1.Session, tf.compat.v1.train.Saver]:
"""
Initialize TF.
"""
print('Python: ' + sys.version)
print('Tensorflow: ' + tf.__version__)
sess = tf.compat.v1.Session() # TF session
saver = tf.compat.v1.train.Saver(max_to_keep=1) # saver saves model to file
latest_snapshot = tf.train.latest_checkpoint(self.model_dir ) # is there a saved model?
# if model must be restored (for inference), there must be a snapshot
if self.must_restore and not latest_snapshot:
raise Exception('No saved model found in: ' + model_dir)
# load saved model if available
if latest_snapshot:
print('Init with stored values from ' + latest_snapshot)
saver.restore(sess, latest_snapshot)
else:
print('Init with new values')
sess.run(tf.compat.v1.global_variables_initializer())
return sess, saver
def to_sparse(self, texts: List[str]) -> Tuple[List[List[int]], List[int], List[int]]:
"""
Put ground truth texts into sparse tensor for ctc_loss.
"""
indices = []
values = []
shape = [len(texts), 0] # last entry must be max(labelList[i])
# go over all texts
for batchElement, text in enumerate(texts):
# convert to string of label (i.e. class-ids)
label_str = [self.char_list.index(c) for c in text]
# sparse tensor must have size of max. label-string
if len(label_str) > shape[1]:
shape[1] = len(label_str)
# put each label into sparse tensor
for i, label in enumerate(label_str):
indices.append([batchElement, i])
values.append(label)
return indices, values, shape
def decoder_output_to_text(self, ctc_output: tuple, batch_size: int) -> List[str]:
"""
Extract texts from output of CTC decoder.
"""
# word beam search: already contains label strings
if self.decoder_type == DecoderType.WordBeamSearch:
label_strs = ctc_output
# TF decoders: label strings are contained in sparse tensor
else:
# ctc returns tuple, first element is SparseTensor
decoded = ctc_output[0][0]
# contains string of labels for each batch element
label_strs = [[] for _ in range(batch_size)]
# go over all indices and save mapping: batch -> values
for (idx, idx2d) in enumerate(decoded.indices):
label = decoded.values[idx]
batch_element = idx2d[0] # index according to [b,t]
label_strs[batch_element].append(label)
# map labels to chars for all batch elements
return [''.join([self.char_list[c] for c in labelStr]) for labelStr in label_strs]
def train_batch(self, batch: Batch) -> float:
"""
Feed a batch into the NN to train it.
"""
num_batch_elements = len(batch.imgs)
max_text_len = batch.imgs[0].shape[0] // 4
sparse = self.to_sparse(batch.gt_texts)
eval_list = [self.optimizer, self.loss]
feed_dict = {self.input_imgs: batch.imgs, self.gt_texts: sparse,
self.seq_len: [max_text_len] * num_batch_elements, self.is_train: True}
_, loss_val = self.sess.run(eval_list, feed_dict)
self.batches_trained += 1
return loss_val
@staticmethod
def dump_nn_output(rnn_output: np.ndarray) -> None:
"""
Dump the output of the NN to CSV file(s).
"""
dump_dir = '../dump/'
if not os.path.isdir(dump_dir):
os.mkdir(dump_dir)
# iterate over all batch elements and create a CSV file for each one
max_t, max_b, max_c = rnn_output.shape
for b in range(max_b):
csv = ''
for t in range(max_t):
for c in range(max_c):
csv += str(rnn_output[t, b, c]) + ';'
csv += '\n'
fn = dump_dir + 'rnnOutput_' + str(b) + '.csv'
print('Write dump of NN to file: ' + fn)
with open(fn, 'w') as f:
f.write(csv)
def infer_batch(self, batch: Batch, calc_probability: bool = False, probability_of_gt: bool = False):
"""
Feed a batch into the NN to recognize the texts.
"""
# decode, optionally save RNN output
num_batch_elements = len(batch.imgs)
# put tensors to be evaluated into list
eval_list = []
if self.decoder_type == DecoderType.WordBeamSearch:
eval_list.append(self.wbs_input)
else:
eval_list.append(self.decoder)
if self.dump or calc_probability:
eval_list.append(self.ctc_in_3d_tbc)
# sequence length depends on input image size (model downsizes width by 4)
max_text_len = batch.imgs[0].shape[0] // 4
# dict containing all tensor fed into the model
feed_dict = {self.input_imgs: batch.imgs, self.seq_len: [max_text_len] * num_batch_elements,
self.is_train: False}
# evaluate model
eval_res = self.sess.run(eval_list, feed_dict)
# TF decoders: decoding already done in TF graph
if self.decoder_type != DecoderType.WordBeamSearch:
decoded = eval_res[0]
# word beam search decoder: decoding is done in C++ function compute()
else:
decoded = self.decoder.compute(eval_res[0])
# map labels (numbers) to character string
texts = self.decoder_output_to_text(decoded, num_batch_elements)
# feed RNN output and recognized text into CTC loss to compute labeling probability
probs = None
if calc_probability:
sparse = self.to_sparse(batch.gt_texts) if probability_of_gt else self.to_sparse(texts)
ctc_input = eval_res[1]
eval_list = self.loss_per_element
feed_dict = {self.saved_ctc_input: ctc_input, self.gt_texts: sparse,
self.seq_len: [max_text_len] * num_batch_elements, self.is_train: False}
loss_vals = self.sess.run(eval_list, feed_dict)
probs = np.exp(-loss_vals)
# dump the output of the NN to CSV file(s)
if self.dump:
self.dump_nn_output(eval_res[1])
return texts, probs
def save(self) -> None:
"""
Save model to file.
"""
self.snap_ID += 1
self.saver.save(self.sess, '../model/snapshot', global_step=self.snap_ID)
|