Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from path import Path
|
6 |
+
import streamlit as st
|
7 |
+
from typing import Tuple
|
8 |
+
from app.dataloader_iam import Batch
|
9 |
+
from app.model import Model, DecoderType
|
10 |
+
from app.preprocessor import Preprocessor
|
11 |
+
from streamlit_drawable_canvas import st_canvas
|
12 |
+
import easyocr # Import EasyOCR
|
13 |
+
|
14 |
+
# Set page config at the very beginning (only executed once)
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="HTR App",
|
17 |
+
page_icon=":pencil:",
|
18 |
+
layout="centered",
|
19 |
+
initial_sidebar_state="auto",
|
20 |
+
)
|
21 |
+
|
22 |
+
ms = st.session_state
|
23 |
+
if "themes" not in ms:
|
24 |
+
ms.themes = {"current_theme": "light",
|
25 |
+
"refreshed": True,
|
26 |
+
|
27 |
+
"light": {"theme.base": "dark",
|
28 |
+
"theme.backgroundColor": "black",
|
29 |
+
"theme.primaryColor": "#c98bdb",
|
30 |
+
"theme.secondaryBackgroundColor": "#5591f5",
|
31 |
+
"theme.textColor": "white",
|
32 |
+
"theme.textColor": "white",
|
33 |
+
"button_face": "🌜"},
|
34 |
+
|
35 |
+
"dark": {"theme.base": "light",
|
36 |
+
"theme.backgroundColor": "white",
|
37 |
+
"theme.primaryColor": "#5591f5",
|
38 |
+
"theme.secondaryBackgroundColor": "#82E1D7",
|
39 |
+
"theme.textColor": "#0a1464",
|
40 |
+
"button_face": "🌞"},
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
def ChangeTheme():
|
45 |
+
previous_theme = ms.themes["current_theme"]
|
46 |
+
tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]
|
47 |
+
for vkey, vval in tdict.items():
|
48 |
+
if vkey.startswith("theme"): st._config.set_option(vkey, vval)
|
49 |
+
|
50 |
+
ms.themes["refreshed"] = False
|
51 |
+
if previous_theme == "dark": ms.themes["current_theme"] = "light"
|
52 |
+
elif previous_theme == "light": ms.themes["current_theme"] = "dark"
|
53 |
+
|
54 |
+
|
55 |
+
btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"]
|
56 |
+
st.button(btn_face, on_click=ChangeTheme)
|
57 |
+
|
58 |
+
if ms.themes["refreshed"] == False:
|
59 |
+
ms.themes["refreshed"] = True
|
60 |
+
st.rerun()
|
61 |
+
|
62 |
+
|
63 |
+
def get_img_size(line_mode: bool = False) -> Tuple[int, int]:
|
64 |
+
"""
|
65 |
+
Auxiliary method that sets the height and width
|
66 |
+
Height is fixed while width is set according to the Model used.
|
67 |
+
"""
|
68 |
+
if line_mode:
|
69 |
+
return 256, get_img_height()
|
70 |
+
return 128, get_img_height()
|
71 |
+
|
72 |
+
def get_img_height() -> int:
|
73 |
+
"""
|
74 |
+
Auxiliary method that sets the height, which is fixed for the Neural Network.
|
75 |
+
"""
|
76 |
+
return 32
|
77 |
+
|
78 |
+
def infer(line_mode: bool, model: Model, fn_img: Path) -> None:
|
79 |
+
"""
|
80 |
+
Auxiliary method that does inference using the pretrained models:
|
81 |
+
Recognizes text in an image given its path.
|
82 |
+
"""
|
83 |
+
img = cv2.imread(fn_img, cv2.IMREAD_GRAYSCALE)
|
84 |
+
assert img is not None
|
85 |
+
|
86 |
+
preprocessor = Preprocessor(get_img_size(line_mode), dynamic_width=True, padding=16)
|
87 |
+
img = preprocessor.process_img(img)
|
88 |
+
|
89 |
+
batch = Batch([img], None, 1)
|
90 |
+
recognized, probability = model.infer_batch(batch, True)
|
91 |
+
return [recognized, probability]
|
92 |
+
|
93 |
+
def infer_super_model(image_path) -> None:
|
94 |
+
reader = easyocr.Reader(['en']) # Initialize EasyOCR reader
|
95 |
+
result = reader.readtext(image_path)
|
96 |
+
recognized_texts = [text[1] for text in result] # Extract recognized texts
|
97 |
+
probabilities = [text[2] for text in result] # Extract probabilities
|
98 |
+
return recognized_texts, probabilities
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def main():
|
103 |
+
|
104 |
+
st.title('Extract text from Image Demo')
|
105 |
+
|
106 |
+
st.markdown("""
|
107 |
+
Streamlit Web Interface for Handwritten Text Recognition (HTR), Optical Character Recognition (OCR)
|
108 |
+
implemented with TensorFlow and trained on the IAM off-line HTR dataset.
|
109 |
+
The model takes images of single words or text lines (multiple words) as input and outputs the recognized text.
|
110 |
+
""", unsafe_allow_html=True)
|
111 |
+
|
112 |
+
st.markdown("""
|
113 |
+
Predictions can be made using one of two models:
|
114 |
+
- Single_Model (Trained on Single Word Images)
|
115 |
+
- Line_Model (Trained on Text Line Images)
|
116 |
+
- Super_Model ( Most Robust Option for English )
|
117 |
+
- Burmese (Link)
|
118 |
+
""", unsafe_allow_html=True)
|
119 |
+
|
120 |
+
st.subheader('Select a Model, Choose the Arguments and Draw in the box below or Upload an Image to obtain a prediction.')
|
121 |
+
|
122 |
+
#Selectors for the model and decoder
|
123 |
+
modelSelect = st.selectbox("Select a Model", ['Single_Model', 'Line_Model', 'Super_Model'])
|
124 |
+
|
125 |
+
|
126 |
+
if modelSelect != 'Super_Model':
|
127 |
+
decoderSelect = st.selectbox("Select a Decoder", ['Bestpath', 'Beamsearch', 'Wordbeamsearch'])
|
128 |
+
|
129 |
+
|
130 |
+
#Mappings (dictionaries) for the model and decoder. Asigns the directory or the DecoderType of the selected option.
|
131 |
+
modelMapping = {
|
132 |
+
"Single_Model": '../model/word-model',
|
133 |
+
"Line_Model": '../model/line-model'
|
134 |
+
}
|
135 |
+
|
136 |
+
decoderMapping = {
|
137 |
+
'Bestpath': DecoderType.BestPath,
|
138 |
+
'Beamsearch': DecoderType.BeamSearch,
|
139 |
+
'Wordbeamsearch': DecoderType.WordBeamSearch
|
140 |
+
}
|
141 |
+
|
142 |
+
#Slider for pencil width
|
143 |
+
strokeWidth = st.slider("Stroke Width: ", 1, 25, 6)
|
144 |
+
|
145 |
+
#Canvas/Text Box for user input. BackGround Color must be white (#FFFFFF) or else text will not be properly recognised.
|
146 |
+
inputDrawn = st_canvas(
|
147 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
148 |
+
stroke_width=strokeWidth,
|
149 |
+
update_streamlit=True,
|
150 |
+
background_image=None,
|
151 |
+
height = 200,
|
152 |
+
width = 400,
|
153 |
+
drawing_mode='freedraw',
|
154 |
+
key="canvas",
|
155 |
+
background_color = '#FFFFFF'
|
156 |
+
)
|
157 |
+
|
158 |
+
#Buffer for user input (images uploaded from the user's device)
|
159 |
+
inputBuffer = st.file_uploader("Upload an Image", type=["png"])
|
160 |
+
|
161 |
+
#Inference Button
|
162 |
+
inferBool = st.button("Recognize Text")
|
163 |
+
|
164 |
+
# After clicking the "Recognize Text" button, check if the model selected is Super_Model
|
165 |
+
if inferBool:
|
166 |
+
if modelSelect == 'Super_Model':
|
167 |
+
inputArray = None # Initialize inputArray to None
|
168 |
+
|
169 |
+
# Handling uploaded file
|
170 |
+
if inputBuffer is not None:
|
171 |
+
with Image.open(inputBuffer).convert('RGB') as img:
|
172 |
+
inputArray = np.array(img)
|
173 |
+
|
174 |
+
# Handling canvas data
|
175 |
+
elif inputDrawn.image_data is not None:
|
176 |
+
# Convert RGBA to RGB
|
177 |
+
inputArray = cv2.cvtColor(np.array(inputDrawn.image_data, dtype=np.uint8), cv2.COLOR_RGBA2RGB)
|
178 |
+
|
179 |
+
# Now check if inputArray has been set
|
180 |
+
if inputArray is not None:
|
181 |
+
# Initialize EasyOCR Reader
|
182 |
+
reader = easyocr.Reader(['en']) # Assuming English language; adjust as necessary
|
183 |
+
# Perform OCR
|
184 |
+
results = reader.readtext(inputArray)
|
185 |
+
|
186 |
+
# Display results
|
187 |
+
all_text = ''
|
188 |
+
for (bbox, text, prob) in results:
|
189 |
+
all_text += f'{text} (confidence: {prob:.2f})\n'
|
190 |
+
|
191 |
+
st.write("**Recognized Texts and their Confidence Scores:**")
|
192 |
+
st.text(all_text)
|
193 |
+
else:
|
194 |
+
st.write("No image data found. Please upload an image or draw on the canvas.")
|
195 |
+
|
196 |
+
|
197 |
+
else:
|
198 |
+
# Handle other model selections as before
|
199 |
+
if ((inputDrawn.image_data is not None or inputBuffer is not None) and inferBool == True):
|
200 |
+
#We turn the input into a numpy array
|
201 |
+
if inputDrawn.image_data is not None:
|
202 |
+
inputArray = np.array(inputDrawn.image_data)
|
203 |
+
|
204 |
+
if inputBuffer is not None:
|
205 |
+
inputBufferImage = Image.open(inputBuffer)
|
206 |
+
inputArray = np.array(inputBufferImage)
|
207 |
+
|
208 |
+
#We turn this array into a .png format and save it.
|
209 |
+
inputImage = Image.fromarray(inputArray.astype('uint8'), 'RGBA')
|
210 |
+
inputImage.save('userInput.png')
|
211 |
+
#We obtain the model directory and the decoder type from their mapping
|
212 |
+
modelDir = modelMapping[modelSelect]
|
213 |
+
decoderType = decoderMapping[decoderSelect]
|
214 |
+
|
215 |
+
#Finally, we call the model with this image as attribute and display the Best Candidate and its probability on the Interface
|
216 |
+
model = Model(list(open(modelDir + "/charList.txt").read()), modelDir, decoderType, must_restore=True)
|
217 |
+
inferedText = infer(modelDir == '../model/line-model', model, 'userInput.png')
|
218 |
+
|
219 |
+
st.write("**Best Candidate: **", inferedText[0][0])
|
220 |
+
st.write("**Probability: **", str(inferedText[1][0]*100) + "%")
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
main()
|