File size: 20,694 Bytes
dd217c7 9eac142 dd217c7 9eac142 dd217c7 9eac142 dd217c7 9eac142 dd217c7 a674527 dd217c7 a674527 dd217c7 9eac142 dd217c7 4064aae dd217c7 9eac142 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 1d03890 dd217c7 1d03890 dd217c7 1d03890 dd217c7 1d03890 dd217c7 1d03890 dd217c7 1d03890 dd217c7 1d03890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
from __future__ import annotations
import os
import math
import random
import string
from tqdm import tqdm
from collections import defaultdict
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import torchaudio
import jieba
from pypinyin import lazy_pinyin, Style
from model.ecapa_tdnn import ECAPA_TDNN_SMALL
from model.modules import MelSpec
# seed everything
def seed_everything(seed = 0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# helpers
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
# tensor helpers
def lens_to_mask(
t: int['b'],
length: int | None = None
) -> bool['b n']:
if not exists(length):
length = t.amax()
seq = torch.arange(length, device = t.device)
return seq[None, :] < t[:, None]
def mask_from_start_end_indices(
seq_len: int['b'],
start: int['b'],
end: int['b']
):
max_seq_len = seq_len.max().item()
seq = torch.arange(max_seq_len, device = start.device).long()
start_mask = seq[None, :] >= start[:, None]
end_mask = seq[None, :] < end[:, None]
return start_mask & end_mask
def mask_from_frac_lengths(
seq_len: int['b'],
frac_lengths: float['b']
):
lengths = (frac_lengths * seq_len).long()
max_start = seq_len - lengths
rand = torch.rand_like(frac_lengths)
start = (max_start * rand).long().clamp(min = 0)
end = start + lengths
return mask_from_start_end_indices(seq_len, start, end)
def maybe_masked_mean(
t: float['b n d'],
mask: bool['b n'] = None
) -> float['b d']:
if not exists(mask):
return t.mean(dim = 1)
t = torch.where(mask[:, :, None], t, torch.tensor(0., device=t.device))
num = t.sum(dim=1)
den = mask.float().sum(dim=1)
return num / den.clamp(min=1.)
# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(
text: list[str],
padding_value = -1
) -> int['b nt']:
list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] # ByT5 style
text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True)
return text
# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
text: list[str] | list[list[str]],
vocab_char_map: dict[str, int], # {char: idx}
padding_value = -1
) -> int['b nt']:
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True)
return text
# Get tokenizer
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
'''
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
- "char" for char-wise tokenizer, need .txt vocab_file
- "byte" for utf-8 tokenizer
- "custom" if you're directly passing in a path to the vocab.txt you want to use
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
- if use "char", derived from unfiltered character & symbol counts of custom dataset
- if use "byte", set to 256 (unicode byte range)
'''
if tokenizer in ["pinyin", "char"]:
with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
elif tokenizer == "byte":
vocab_char_map = None
vocab_size = 256
elif tokenizer == "custom":
with open (dataset_name, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
return vocab_char_map, vocab_size
# convert char to pinyin
def convert_char_to_pinyin(text_list, polyphone = True):
final_text_list = []
god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"}) # in case librispeech (orig no-pc) test-clean
custom_trans = str.maketrans({';': ','}) # add custom trans here, to address oov
for text in text_list:
char_list = []
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
text = text.translate(custom_trans)
for seg in jieba.cut(text):
seg_byte_len = len(bytes(seg, 'UTF-8'))
if seg_byte_len == len(seg): # if pure alphabets and symbols
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
char_list.append(" ")
char_list.extend(seg)
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
for c in seg:
if c not in "。,、;:?!《》【】—…":
char_list.append(" ")
char_list.append(c)
else: # if mixed chinese characters, alphabets and symbols
for c in seg:
if ord(c) < 256:
char_list.extend(c)
else:
if c not in "。,、;:?!《》【】—…":
char_list.append(" ")
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
else: # if is zh punc
char_list.append(c)
final_text_list.append(char_list)
return final_text_list
# save spectrogram
def save_spectrogram(spectrogram, path):
plt.figure(figsize=(12, 4))
plt.imshow(spectrogram, origin='lower', aspect='auto')
plt.colorbar()
plt.savefig(path)
plt.close()
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_seedtts_testset_metainfo(metalst):
f = open(metalst); lines = f.readlines(); f.close()
metainfo = []
for line in lines:
if len(line.strip().split('|')) == 5:
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
elif len(line.strip().split('|')) == 4:
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
if not os.path.isabs(prompt_wav):
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
return metainfo
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
f = open(metalst); lines = f.readlines(); f.close()
metainfo = []
for line in lines:
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
return metainfo
# padded to max length mel batch
def padded_mel_batch(ref_mels):
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
padded_ref_mels = []
for mel in ref_mels:
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0)
padded_ref_mels.append(padded_ref_mel)
padded_ref_mels = torch.stack(padded_ref_mels)
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
return padded_ref_mels
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_inference_prompt(
metainfo,
speed = 1., tokenizer = "pinyin", polyphone = True,
target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1,
use_truth_duration = False,
infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40,
):
prompts_all = []
min_tokens = min_secs * target_sample_rate // hop_length
max_tokens = max_secs * target_sample_rate // hop_length
batch_accum = [0] * num_buckets
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \
([[] for _ in range(num_buckets)] for _ in range(6))
mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length)
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
# Audio
ref_audio, ref_sr = torchaudio.load(prompt_wav)
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
if ref_rms < target_rms:
ref_audio = ref_audio * target_rms / ref_rms
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
if ref_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
ref_audio = resampler(ref_audio)
# Text
if len(prompt_text[-1].encode('utf-8')) == 1:
prompt_text = prompt_text + " "
text = [prompt_text + gt_text]
if tokenizer == "pinyin":
text_list = convert_char_to_pinyin(text, polyphone = polyphone)
else:
text_list = text
# Duration, mel frame length
ref_mel_len = ref_audio.shape[-1] // hop_length
if use_truth_duration:
gt_audio, gt_sr = torchaudio.load(gt_wav)
if gt_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
gt_audio = resampler(gt_audio)
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
# # test vocoder resynthesis
# ref_audio = gt_audio
else:
ref_text_len = len(prompt_text.encode('utf-8'))
gen_text_len = len(gt_text.encode('utf-8'))
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
# to mel spectrogram
ref_mel = mel_spectrogram(ref_audio)
ref_mel = ref_mel.squeeze(0)
# deal with batch
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
assert min_tokens <= total_mel_len <= max_tokens, \
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
utts[bucket_i].append(utt)
ref_rms_list[bucket_i].append(ref_rms)
ref_mels[bucket_i].append(ref_mel)
ref_mel_lens[bucket_i].append(ref_mel_len)
total_mel_lens[bucket_i].append(total_mel_len)
final_text_list[bucket_i].extend(text_list)
batch_accum[bucket_i] += total_mel_len
if batch_accum[bucket_i] >= infer_batch_size:
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
prompts_all.append((
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i]
))
batch_accum[bucket_i] = 0
utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], []
# add residual
for bucket_i, bucket_frames in enumerate(batch_accum):
if bucket_frames > 0:
prompts_all.append((
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i]
))
# not only leave easy work for last workers
random.seed(666)
random.shuffle(prompts_all)
return prompts_all
# get wav_res_ref_text of seed-tts test metalst
# https://github.com/BytedanceSpeech/seed-tts-eval
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
f = open(metalst)
lines = f.readlines()
f.close()
test_set_ = []
for line in tqdm(lines):
if len(line.strip().split('|')) == 5:
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|')
elif len(line.strip().split('|')) == 4:
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|')
if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')):
continue
gen_wav = os.path.join(gen_wav_dir, utt + '.wav')
if not os.path.isabs(prompt_wav):
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
test_set_.append((gen_wav, prompt_wav, gt_text))
num_jobs = len(gpus)
if num_jobs == 1:
return [(gpus[0], test_set_)]
wav_per_job = len(test_set_) // num_jobs + 1
test_set = []
for i in range(num_jobs):
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
return test_set
# get librispeech test-clean cross sentence test
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False):
f = open(metalst)
lines = f.readlines()
f.close()
test_set_ = []
for line in tqdm(lines):
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t')
if eval_ground_truth:
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-')
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac')
else:
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')):
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav')
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-')
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac')
test_set_.append((gen_wav, ref_wav, gen_txt))
num_jobs = len(gpus)
if num_jobs == 1:
return [(gpus[0], test_set_)]
wav_per_job = len(test_set_) // num_jobs + 1
test_set = []
for i in range(num_jobs):
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job]))
return test_set
# load asr model
def load_asr_model(lang, ckpt_dir = ""):
if lang == "zh":
from funasr import AutoModel
model = AutoModel(
model = os.path.join(ckpt_dir, "paraformer-zh"),
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
# spk_model = os.path.join(ckpt_dir, "cam++"),
disable_update=True,
) # following seed-tts setting
elif lang == "en":
from faster_whisper import WhisperModel
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
model = WhisperModel(model_size, device="cuda", compute_type="float16")
return model
# WER Evaluation, the way Seed-TTS does
def run_asr_wer(args):
rank, lang, test_set, ckpt_dir = args
if lang == "zh":
import zhconv
torch.cuda.set_device(rank)
elif lang == "en":
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
else:
raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.")
asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir)
from zhon.hanzi import punctuation
punctuation_all = punctuation + string.punctuation
wers = []
from jiwer import compute_measures
for gen_wav, prompt_wav, truth in tqdm(test_set):
if lang == "zh":
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
hypo = res[0]["text"]
hypo = zhconv.convert(hypo, 'zh-cn')
elif lang == "en":
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
hypo = ''
for segment in segments:
hypo = hypo + ' ' + segment.text
# raw_truth = truth
# raw_hypo = hypo
for x in punctuation_all:
truth = truth.replace(x, '')
hypo = hypo.replace(x, '')
truth = truth.replace(' ', ' ')
hypo = hypo.replace(' ', ' ')
if lang == "zh":
truth = " ".join([x for x in truth])
hypo = " ".join([x for x in hypo])
elif lang == "en":
truth = truth.lower()
hypo = hypo.lower()
measures = compute_measures(truth, hypo)
wer = measures["wer"]
# ref_list = truth.split(" ")
# subs = measures["substitutions"] / len(ref_list)
# dele = measures["deletions"] / len(ref_list)
# inse = measures["insertions"] / len(ref_list)
wers.append(wer)
return wers
# SIM Evaluation
def run_sim(args):
rank, test_set, ckpt_dir = args
device = f"cuda:{rank}"
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None)
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict['model'], strict=False)
use_gpu=True if torch.cuda.is_available() else False
if use_gpu:
model = model.cuda(device)
model.eval()
sim_list = []
for wav1, wav2, truth in tqdm(test_set):
wav1, sr1 = torchaudio.load(wav1)
wav2, sr2 = torchaudio.load(wav2)
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
wav1 = resample1(wav1)
wav2 = resample2(wav2)
if use_gpu:
wav1 = wav1.cuda(device)
wav2 = wav2.cuda(device)
with torch.no_grad():
emb1 = model(wav1)
emb2 = model(wav2)
sim = F.cosine_similarity(emb1, emb2)[0].item()
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
sim_list.append(sim)
return sim_list
# filter func for dirty data with many repetitions
def repetition_found(text, length = 2, tolerance = 10):
pattern_count = defaultdict(int)
for i in range(len(text) - length + 1):
pattern = text[i:i + length]
pattern_count[pattern] += 1
for pattern, count in pattern_count.items():
if count > tolerance:
return True
return False
# load model checkpoint for inference
def load_checkpoint(model, ckpt_path, device, use_ema = True):
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {'ema_model_state_dict': checkpoint}
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]}
model.load_state_dict(checkpoint['model_state_dict'])
else:
if ckpt_type == "safetensors":
checkpoint = {'model_state_dict': checkpoint}
model.load_state_dict(checkpoint['model_state_dict'])
return model.to(device)
|