|
from __future__ import annotations |
|
|
|
import os |
|
import math |
|
import random |
|
import string |
|
from tqdm import tqdm |
|
from collections import defaultdict |
|
|
|
import matplotlib |
|
matplotlib.use("Agg") |
|
import matplotlib.pylab as plt |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.nn.utils.rnn import pad_sequence |
|
import torchaudio |
|
|
|
import jieba |
|
from pypinyin import lazy_pinyin, Style |
|
|
|
from model.ecapa_tdnn import ECAPA_TDNN_SMALL |
|
from model.modules import MelSpec |
|
|
|
|
|
|
|
|
|
def seed_everything(seed = 0): |
|
random.seed(seed) |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
|
|
def exists(v): |
|
return v is not None |
|
|
|
def default(v, d): |
|
return v if exists(v) else d |
|
|
|
|
|
|
|
def lens_to_mask( |
|
t: int['b'], |
|
length: int | None = None |
|
) -> bool['b n']: |
|
|
|
if not exists(length): |
|
length = t.amax() |
|
|
|
seq = torch.arange(length, device = t.device) |
|
return seq[None, :] < t[:, None] |
|
|
|
def mask_from_start_end_indices( |
|
seq_len: int['b'], |
|
start: int['b'], |
|
end: int['b'] |
|
): |
|
max_seq_len = seq_len.max().item() |
|
seq = torch.arange(max_seq_len, device = start.device).long() |
|
start_mask = seq[None, :] >= start[:, None] |
|
end_mask = seq[None, :] < end[:, None] |
|
return start_mask & end_mask |
|
|
|
def mask_from_frac_lengths( |
|
seq_len: int['b'], |
|
frac_lengths: float['b'] |
|
): |
|
lengths = (frac_lengths * seq_len).long() |
|
max_start = seq_len - lengths |
|
|
|
rand = torch.rand_like(frac_lengths) |
|
start = (max_start * rand).long().clamp(min = 0) |
|
end = start + lengths |
|
|
|
return mask_from_start_end_indices(seq_len, start, end) |
|
|
|
def maybe_masked_mean( |
|
t: float['b n d'], |
|
mask: bool['b n'] = None |
|
) -> float['b d']: |
|
|
|
if not exists(mask): |
|
return t.mean(dim = 1) |
|
|
|
t = torch.where(mask[:, :, None], t, torch.tensor(0., device=t.device)) |
|
num = t.sum(dim=1) |
|
den = mask.float().sum(dim=1) |
|
|
|
return num / den.clamp(min=1.) |
|
|
|
|
|
|
|
def list_str_to_tensor( |
|
text: list[str], |
|
padding_value = -1 |
|
) -> int['b nt']: |
|
list_tensors = [torch.tensor([*bytes(t, 'UTF-8')]) for t in text] |
|
text = pad_sequence(list_tensors, padding_value = padding_value, batch_first = True) |
|
return text |
|
|
|
|
|
def list_str_to_idx( |
|
text: list[str] | list[list[str]], |
|
vocab_char_map: dict[str, int], |
|
padding_value = -1 |
|
) -> int['b nt']: |
|
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] |
|
text = pad_sequence(list_idx_tensors, padding_value = padding_value, batch_first = True) |
|
return text |
|
|
|
|
|
|
|
|
|
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): |
|
''' |
|
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file |
|
- "char" for char-wise tokenizer, need .txt vocab_file |
|
- "byte" for utf-8 tokenizer |
|
- "custom" if you're directly passing in a path to the vocab.txt you want to use |
|
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols |
|
- if use "char", derived from unfiltered character & symbol counts of custom dataset |
|
- if use "byte", set to 256 (unicode byte range) |
|
''' |
|
if tokenizer in ["pinyin", "char"]: |
|
with open (f"data/{dataset_name}_{tokenizer}/vocab.txt", "r", encoding="utf-8") as f: |
|
vocab_char_map = {} |
|
for i, char in enumerate(f): |
|
vocab_char_map[char[:-1]] = i |
|
vocab_size = len(vocab_char_map) |
|
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" |
|
|
|
elif tokenizer == "byte": |
|
vocab_char_map = None |
|
vocab_size = 256 |
|
elif tokenizer == "custom": |
|
with open (dataset_name, "r", encoding="utf-8") as f: |
|
vocab_char_map = {} |
|
for i, char in enumerate(f): |
|
vocab_char_map[char[:-1]] = i |
|
vocab_size = len(vocab_char_map) |
|
|
|
return vocab_char_map, vocab_size |
|
|
|
|
|
|
|
|
|
def convert_char_to_pinyin(text_list, polyphone = True): |
|
final_text_list = [] |
|
god_knows_why_en_testset_contains_zh_quote = str.maketrans({'“': '"', '”': '"', '‘': "'", '’': "'"}) |
|
custom_trans = str.maketrans({';': ','}) |
|
for text in text_list: |
|
char_list = [] |
|
text = text.translate(god_knows_why_en_testset_contains_zh_quote) |
|
text = text.translate(custom_trans) |
|
for seg in jieba.cut(text): |
|
seg_byte_len = len(bytes(seg, 'UTF-8')) |
|
if seg_byte_len == len(seg): |
|
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": |
|
char_list.append(" ") |
|
char_list.extend(seg) |
|
elif polyphone and seg_byte_len == 3 * len(seg): |
|
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) |
|
for c in seg: |
|
if c not in "。,、;:?!《》【】—…": |
|
char_list.append(" ") |
|
char_list.append(c) |
|
else: |
|
for c in seg: |
|
if ord(c) < 256: |
|
char_list.extend(c) |
|
else: |
|
if c not in "。,、;:?!《》【】—…": |
|
char_list.append(" ") |
|
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) |
|
else: |
|
char_list.append(c) |
|
final_text_list.append(char_list) |
|
|
|
return final_text_list |
|
|
|
|
|
|
|
def save_spectrogram(spectrogram, path): |
|
plt.figure(figsize=(12, 4)) |
|
plt.imshow(spectrogram, origin='lower', aspect='auto') |
|
plt.colorbar() |
|
plt.savefig(path) |
|
plt.close() |
|
|
|
|
|
|
|
def get_seedtts_testset_metainfo(metalst): |
|
f = open(metalst); lines = f.readlines(); f.close() |
|
metainfo = [] |
|
for line in lines: |
|
if len(line.strip().split('|')) == 5: |
|
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') |
|
elif len(line.strip().split('|')) == 4: |
|
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') |
|
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav") |
|
if not os.path.isabs(prompt_wav): |
|
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) |
|
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav)) |
|
return metainfo |
|
|
|
|
|
|
|
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path): |
|
f = open(metalst); lines = f.readlines(); f.close() |
|
metainfo = [] |
|
for line in lines: |
|
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') |
|
|
|
|
|
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') |
|
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') |
|
|
|
|
|
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') |
|
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') |
|
|
|
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav)) |
|
|
|
return metainfo |
|
|
|
|
|
|
|
def padded_mel_batch(ref_mels): |
|
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax() |
|
padded_ref_mels = [] |
|
for mel in ref_mels: |
|
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value = 0) |
|
padded_ref_mels.append(padded_ref_mel) |
|
padded_ref_mels = torch.stack(padded_ref_mels) |
|
padded_ref_mels = padded_ref_mels.permute(0, 2, 1) |
|
return padded_ref_mels |
|
|
|
|
|
|
|
|
|
def get_inference_prompt( |
|
metainfo, |
|
speed = 1., tokenizer = "pinyin", polyphone = True, |
|
target_sample_rate = 24000, n_mel_channels = 100, hop_length = 256, target_rms = 0.1, |
|
use_truth_duration = False, |
|
infer_batch_size = 1, num_buckets = 200, min_secs = 3, max_secs = 40, |
|
): |
|
prompts_all = [] |
|
|
|
min_tokens = min_secs * target_sample_rate // hop_length |
|
max_tokens = max_secs * target_sample_rate // hop_length |
|
|
|
batch_accum = [0] * num_buckets |
|
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = \ |
|
([[] for _ in range(num_buckets)] for _ in range(6)) |
|
|
|
mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length) |
|
|
|
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."): |
|
|
|
|
|
ref_audio, ref_sr = torchaudio.load(prompt_wav) |
|
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio))) |
|
if ref_rms < target_rms: |
|
ref_audio = ref_audio * target_rms / ref_rms |
|
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue." |
|
if ref_sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate) |
|
ref_audio = resampler(ref_audio) |
|
|
|
|
|
if len(prompt_text[-1].encode('utf-8')) == 1: |
|
prompt_text = prompt_text + " " |
|
text = [prompt_text + gt_text] |
|
if tokenizer == "pinyin": |
|
text_list = convert_char_to_pinyin(text, polyphone = polyphone) |
|
else: |
|
text_list = text |
|
|
|
|
|
ref_mel_len = ref_audio.shape[-1] // hop_length |
|
if use_truth_duration: |
|
gt_audio, gt_sr = torchaudio.load(gt_wav) |
|
if gt_sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate) |
|
gt_audio = resampler(gt_audio) |
|
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed) |
|
|
|
|
|
|
|
else: |
|
ref_text_len = len(prompt_text.encode('utf-8')) |
|
gen_text_len = len(gt_text.encode('utf-8')) |
|
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed) |
|
|
|
|
|
ref_mel = mel_spectrogram(ref_audio) |
|
ref_mel = ref_mel.squeeze(0) |
|
|
|
|
|
assert infer_batch_size > 0, "infer_batch_size should be greater than 0." |
|
assert min_tokens <= total_mel_len <= max_tokens, \ |
|
f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]." |
|
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets) |
|
|
|
utts[bucket_i].append(utt) |
|
ref_rms_list[bucket_i].append(ref_rms) |
|
ref_mels[bucket_i].append(ref_mel) |
|
ref_mel_lens[bucket_i].append(ref_mel_len) |
|
total_mel_lens[bucket_i].append(total_mel_len) |
|
final_text_list[bucket_i].extend(text_list) |
|
|
|
batch_accum[bucket_i] += total_mel_len |
|
|
|
if batch_accum[bucket_i] >= infer_batch_size: |
|
|
|
prompts_all.append(( |
|
utts[bucket_i], |
|
ref_rms_list[bucket_i], |
|
padded_mel_batch(ref_mels[bucket_i]), |
|
ref_mel_lens[bucket_i], |
|
total_mel_lens[bucket_i], |
|
final_text_list[bucket_i] |
|
)) |
|
batch_accum[bucket_i] = 0 |
|
utts[bucket_i], ref_rms_list[bucket_i], ref_mels[bucket_i], ref_mel_lens[bucket_i], total_mel_lens[bucket_i], final_text_list[bucket_i] = [], [], [], [], [], [] |
|
|
|
|
|
for bucket_i, bucket_frames in enumerate(batch_accum): |
|
if bucket_frames > 0: |
|
prompts_all.append(( |
|
utts[bucket_i], |
|
ref_rms_list[bucket_i], |
|
padded_mel_batch(ref_mels[bucket_i]), |
|
ref_mel_lens[bucket_i], |
|
total_mel_lens[bucket_i], |
|
final_text_list[bucket_i] |
|
)) |
|
|
|
random.seed(666) |
|
random.shuffle(prompts_all) |
|
|
|
return prompts_all |
|
|
|
|
|
|
|
|
|
|
|
def get_seed_tts_test(metalst, gen_wav_dir, gpus): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
|
|
test_set_ = [] |
|
for line in tqdm(lines): |
|
if len(line.strip().split('|')) == 5: |
|
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split('|') |
|
elif len(line.strip().split('|')) == 4: |
|
utt, prompt_text, prompt_wav, gt_text = line.strip().split('|') |
|
|
|
if not os.path.exists(os.path.join(gen_wav_dir, utt + '.wav')): |
|
continue |
|
gen_wav = os.path.join(gen_wav_dir, utt + '.wav') |
|
if not os.path.isabs(prompt_wav): |
|
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) |
|
|
|
test_set_.append((gen_wav, prompt_wav, gt_text)) |
|
|
|
num_jobs = len(gpus) |
|
if num_jobs == 1: |
|
return [(gpus[0], test_set_)] |
|
|
|
wav_per_job = len(test_set_) // num_jobs + 1 |
|
test_set = [] |
|
for i in range(num_jobs): |
|
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) |
|
|
|
return test_set |
|
|
|
|
|
|
|
|
|
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = False): |
|
f = open(metalst) |
|
lines = f.readlines() |
|
f.close() |
|
|
|
test_set_ = [] |
|
for line in tqdm(lines): |
|
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split('\t') |
|
|
|
if eval_ground_truth: |
|
gen_spk_id, gen_chaptr_id, _ = gen_utt.split('-') |
|
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + '.flac') |
|
else: |
|
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + '.wav')): |
|
raise FileNotFoundError(f"Generated wav not found: {gen_utt}") |
|
gen_wav = os.path.join(gen_wav_dir, gen_utt + '.wav') |
|
|
|
ref_spk_id, ref_chaptr_id, _ = ref_utt.split('-') |
|
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + '.flac') |
|
|
|
test_set_.append((gen_wav, ref_wav, gen_txt)) |
|
|
|
num_jobs = len(gpus) |
|
if num_jobs == 1: |
|
return [(gpus[0], test_set_)] |
|
|
|
wav_per_job = len(test_set_) // num_jobs + 1 |
|
test_set = [] |
|
for i in range(num_jobs): |
|
test_set.append((gpus[i], test_set_[i*wav_per_job:(i+1)*wav_per_job])) |
|
|
|
return test_set |
|
|
|
|
|
|
|
|
|
def load_asr_model(lang, ckpt_dir = ""): |
|
if lang == "zh": |
|
from funasr import AutoModel |
|
model = AutoModel( |
|
model = os.path.join(ckpt_dir, "paraformer-zh"), |
|
|
|
|
|
|
|
disable_update=True, |
|
) |
|
elif lang == "en": |
|
from faster_whisper import WhisperModel |
|
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir |
|
model = WhisperModel(model_size, device="cuda", compute_type="float16") |
|
return model |
|
|
|
|
|
|
|
|
|
def run_asr_wer(args): |
|
rank, lang, test_set, ckpt_dir = args |
|
|
|
if lang == "zh": |
|
import zhconv |
|
torch.cuda.set_device(rank) |
|
elif lang == "en": |
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank) |
|
else: |
|
raise NotImplementedError("lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now.") |
|
|
|
asr_model = load_asr_model(lang, ckpt_dir = ckpt_dir) |
|
|
|
from zhon.hanzi import punctuation |
|
punctuation_all = punctuation + string.punctuation |
|
wers = [] |
|
|
|
from jiwer import compute_measures |
|
for gen_wav, prompt_wav, truth in tqdm(test_set): |
|
if lang == "zh": |
|
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True) |
|
hypo = res[0]["text"] |
|
hypo = zhconv.convert(hypo, 'zh-cn') |
|
elif lang == "en": |
|
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en") |
|
hypo = '' |
|
for segment in segments: |
|
hypo = hypo + ' ' + segment.text |
|
|
|
|
|
|
|
|
|
for x in punctuation_all: |
|
truth = truth.replace(x, '') |
|
hypo = hypo.replace(x, '') |
|
|
|
truth = truth.replace(' ', ' ') |
|
hypo = hypo.replace(' ', ' ') |
|
|
|
if lang == "zh": |
|
truth = " ".join([x for x in truth]) |
|
hypo = " ".join([x for x in hypo]) |
|
elif lang == "en": |
|
truth = truth.lower() |
|
hypo = hypo.lower() |
|
|
|
measures = compute_measures(truth, hypo) |
|
wer = measures["wer"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
wers.append(wer) |
|
|
|
return wers |
|
|
|
|
|
|
|
|
|
def run_sim(args): |
|
rank, test_set, ckpt_dir = args |
|
device = f"cuda:{rank}" |
|
|
|
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type='wavlm_large', config_path=None) |
|
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage) |
|
model.load_state_dict(state_dict['model'], strict=False) |
|
|
|
use_gpu=True if torch.cuda.is_available() else False |
|
if use_gpu: |
|
model = model.cuda(device) |
|
model.eval() |
|
|
|
sim_list = [] |
|
for wav1, wav2, truth in tqdm(test_set): |
|
|
|
wav1, sr1 = torchaudio.load(wav1) |
|
wav2, sr2 = torchaudio.load(wav2) |
|
|
|
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000) |
|
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000) |
|
wav1 = resample1(wav1) |
|
wav2 = resample2(wav2) |
|
|
|
if use_gpu: |
|
wav1 = wav1.cuda(device) |
|
wav2 = wav2.cuda(device) |
|
with torch.no_grad(): |
|
emb1 = model(wav1) |
|
emb2 = model(wav2) |
|
|
|
sim = F.cosine_similarity(emb1, emb2)[0].item() |
|
|
|
sim_list.append(sim) |
|
|
|
return sim_list |
|
|
|
|
|
|
|
|
|
def repetition_found(text, length = 2, tolerance = 10): |
|
pattern_count = defaultdict(int) |
|
for i in range(len(text) - length + 1): |
|
pattern = text[i:i + length] |
|
pattern_count[pattern] += 1 |
|
for pattern, count in pattern_count.items(): |
|
if count > tolerance: |
|
return True |
|
return False |
|
|
|
|
|
|
|
|
|
def load_checkpoint(model, ckpt_path, device, use_ema = True): |
|
model = model.half() |
|
|
|
ckpt_type = ckpt_path.split(".")[-1] |
|
if ckpt_type == "safetensors": |
|
from safetensors.torch import load_file |
|
checkpoint = load_file(ckpt_path) |
|
else: |
|
checkpoint = torch.load(ckpt_path, weights_only=True) |
|
|
|
if use_ema: |
|
if ckpt_type == "safetensors": |
|
checkpoint = {'ema_model_state_dict': checkpoint} |
|
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]} |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
else: |
|
if ckpt_type == "safetensors": |
|
checkpoint = {'model_state_dict': checkpoint} |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
|
return model.to(device) |
|
|