File size: 13,462 Bytes
9ef616c a3a5fc1 b879795 a3a5fc1 9a3c969 cd9cc79 a3a5fc1 9a3c969 0150901 9a3c969 096a065 9a3c969 a3a5fc1 9a3c969 a3a5fc1 9a3c969 4afef57 a3a5fc1 9a3c969 a3a5fc1 9a3c969 a3a5fc1 9a3c969 a3a5fc1 9a3c969 a3a5fc1 9a3c969 a3a5fc1 cd9cc79 a3a5fc1 eb1f61c a3a5fc1 9a3c969 a3a5fc1 3ed3216 a3a5fc1 b879795 a3a5fc1 b879795 a3a5fc1 b879795 a3a5fc1 b879795 a3a5fc1 cd9cc79 b879795 dea771b ea795dd dea771b cd9cc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import gradio as gr
import py3Dmol
from Bio.PDB import *
import numpy as np
from Bio.PDB import PDBParser
import pandas as pd
import torch
import os
from MDmodel import GNN_MD
import h5py
from transformMD import GNNTransformMD
import sys
import pytraj as pt
import pickle
import nglview as nv
# JavaScript functions
resid_hover = """function(atom,viewer) {{
if(!atom.label) {{
atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial,
{{position: atom, backgroundColor: 'mintcream', fontColor:'black'}});
}}
}}"""
hover_func = """
function(atom,viewer) {
if(!atom.label) {
atom.label = viewer.addLabel(atom.interaction,
{position: atom, backgroundColor: 'black', fontColor:'white'});
}
}"""
unhover_func = """
function(atom,viewer) {
if(atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}"""
atom_mapping = {0:'H', 1:'C', 2:'N', 3:'O', 4:'F', 5:'P', 6:'S', 7:'CL', 8:'BR', 9:'I', 10: 'UNK'}
model = GNN_MD(11, 64)
state_dict = torch.load(
"best_weights_rep0.pt",
map_location=torch.device("cpu"),
)["model_state_dict"]
model.load_state_dict(state_dict)
model = model.to('cpu')
model.eval()
def run_leap(fileName, path):
leapText = """
source leaprc.protein.ff14SB
source leaprc.water.tip3p
exp = loadpdb PATH4amb.pdb
saveamberparm exp PATHexp.top PATHexp.crd
quit
"""
with open(path+"leap.in", "w") as outLeap:
outLeap.write(leapText.replace('PATH', path))
os.system("tleap -f "+path+"leap.in >> "+path+"leap.out")
def convert_to_amber_format(pdbName):
fileName, path = pdbName+'.pdb', ''
os.system("pdb4amber -i "+fileName+" -p -y -o "+path+"4amb.pdb -l "+path+"pdb4amber_protein.log")
run_leap(fileName, path)
traj = pt.iterload(path+'exp.crd', top = path+'exp.top')
pt.write_traj(path+fileName, traj, overwrite= True)
print(path+fileName+' was created. Please always use this file for inspection because the coordinates might get translated during amber file generation and thus might vary from the input pdb file.')
return pt.iterload(path+'exp.crd', top = path+'exp.top')
def get_maps(mapPath):
residueMap = pickle.load(open(os.path.join(mapPath,'atoms_residue_map_generate.pickle'),'rb'))
nameMap = pickle.load(open(os.path.join(mapPath,'atoms_name_map_generate.pickle'),'rb'))
typeMap = pickle.load(open(os.path.join(mapPath,'atoms_type_map_generate.pickle'),'rb'))
elementMap = pickle.load(open(os.path.join(mapPath,'map_atomType_element_numbers.pickle'),'rb'))
return residueMap, nameMap, typeMap, elementMap
def get_residues_atomwise(residues):
atomwise = []
for name, nAtoms in residues:
for i in range(nAtoms):
atomwise.append(name)
return atomwise
def get_begin_atom_index(traj):
natoms = [m.n_atoms for m in traj.top.mols]
molecule_begin_atom_index = [0]
x = 0
for i in range(len(natoms)):
x += natoms[i]
molecule_begin_atom_index.append(x)
print('molecule begin atom index', molecule_begin_atom_index, natoms)
return molecule_begin_atom_index
def get_traj_info(traj, mapPath):
coordinates = traj.xyz
residueMap, nameMap, typeMap, elementMap = get_maps(mapPath)
types = [typeMap[a.type] for a in traj.top.atoms]
elements = [elementMap[typ] for typ in types]
atomic_numbers = [a.atomic_number for a in traj.top.atoms]
molecule_begin_atom_index = get_begin_atom_index(traj)
residues = [(residueMap[res.name], res.n_atoms) for res in traj.top.residues]
residues_atomwise = get_residues_atomwise(residues)
return coordinates[0], elements, types, atomic_numbers, residues_atomwise, molecule_begin_atom_index
def write_h5_info(outName, struct, atoms_type, atoms_number, atoms_residue, atoms_element, molecules_begin_atom_index, atoms_coordinates_ref):
if os.path.isfile(outName):
os.remove(outName)
with h5py.File(outName, 'w') as oF:
subgroup = oF.create_group(struct)
subgroup.create_dataset('atoms_residue', data= atoms_residue, compression = "gzip", dtype='i8')
subgroup.create_dataset('molecules_begin_atom_index', data= molecules_begin_atom_index, compression = "gzip", dtype='i8')
subgroup.create_dataset('atoms_type', data= atoms_type, compression = "gzip", dtype='i8')
subgroup.create_dataset('atoms_number', data= atoms_number, compression = "gzip", dtype='i8')
subgroup.create_dataset('atoms_element', data= atoms_element, compression = "gzip", dtype='i8')
subgroup.create_dataset('atoms_coordinates_ref', data= atoms_coordinates_ref, compression = "gzip", dtype='f8')
def preprocess(pdbid: str = None, ouputfile: str = "inference_for_md.hdf5", mask: str = "!@H=", mappath: str = "/maps/"):
traj = convert_to_amber_format(pdbid)
atoms_coordinates_ref, atoms_element, atoms_type, atoms_number, atoms_residue, molecules_begin_atom_index = get_traj_info(traj[mask], mappath)
write_h5_info(ouputfile, pdbid, atoms_type, atoms_number, atoms_residue, atoms_element, molecules_begin_atom_index, atoms_coordinates_ref)
def get_pdb(pdb_code="", filepath=""):
try:
return filepath.name
except AttributeError as e:
if pdb_code is None or pdb_code == "":
return None
else:
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
return f"{pdb_code}.pdb"
def get_offset(pdb):
pdb_multiline = pdb.split("\n")
for line in pdb_multiline:
if line.startswith("ATOM"):
return int(line[22:27])
def get_pdbid_from_filename(filename: str):
# Assuming the filename would be of the standard form 11GS.pdb
return filename.split(".")[0]
def predict(pdb_code, pdb_file):
#path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
#pdb = open(path_to_pdb, "r").read()
# switch to misato env if not running from container
pdbid = get_pdbid_from_filename(pdb_file.name)
mdh5_file = "inference_for_md.hdf5"
mappath = "/maps"
mask = "!@H="
preprocess(pdbid=pdbid, ouputfile=mdh5_file, mask=mask, mappath=mappath)
md_H5File = h5py.File(mdh5_file)
column_names = ["x", "y", "z", "element"]
atoms_protein = pd.DataFrame(columns = column_names)
cutoff = md_H5File[pdbid]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms
atoms_protein["x"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 0]
atoms_protein["y"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 1]
atoms_protein["z"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 2]
atoms_protein["element"] = md_H5File[pdbid]["atoms_element"][:][:cutoff]
item = {}
item["scores"] = 0
item["id"] = pdbid
item["atoms_protein"] = atoms_protein
transform = GNNTransformMD()
data_item = transform(item)
adaptability = model(data_item)
adaptability = adaptability.detach().numpy()
data = []
for i in range(10):
data.append([i, atom_mapping[atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1], atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")],
atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],
atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")],
adaptability[topN_ind[i]]
])
pdb = open(pdb_file.name, "r").read()
view = nv.NGLWidget()
view._remote_call("setSize", target="Widget", args=["800px", "600px"])
view.add_pdbstr(pdb, defaultRepresentation=True)
"""
view = py3Dmol.view(width=600, height=400)
view.setBackgroundColor('white')
view.addModel(pdb, "pdb")
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
"""
for i in range(10):
view.addSphere({'center':{'x':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],'z':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")]},'radius':adaptability[topN_ind[i]]/1.5,'color':'orange','alpha':0.75})
# Add lighting and shading options to the view object:
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
view.setStyle({'sphere': {}})
view.addLight([0, 0, 10], [1, 1, 1], 1) # Add directional light from the z-axis
view.setSpecular(0.5) # Adjust the specular lighting effect
view.setAmbient(0.5) # Adjust the ambient lighting effect
view.zoomTo()
view.rotate(180, "y") # Rotate the structure by 180 degrees along the y-axis
# Add animation options to the view object:
view.animate({'loop': 'forward', 'reps': 2}) # Animate the visualization to loop forward 2 times
"""
output = view._make_html().replace("'", '"')
"""
output = view.render_notebook()
"""
x = f"""<!DOCTYPE html><html> {output} </html>""" # do not use ' in this input
return f"""<iframe style="width: 100%; height:420px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability'])
"""
return output, pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability'])
callback = gr.CSVLogger()
"""
def predict(pdb_code, pdb_file):
#path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
#pdb = open(path_to_pdb, "r").read()
# switch to misato env if not running from container
pdbid = get_pdbid_from_filename(pdb_file.name)
mdh5_file = "inference_for_md.hdf5"
mappath = "/maps"
mask = "!@H="
preprocess(pdbid=pdbid, ouputfile=mdh5_file, mask=mask, mappath=mappath)
md_H5File = h5py.File(mdh5_file)
column_names = ["x", "y", "z", "element"]
atoms_protein = pd.DataFrame(columns = column_names)
cutoff = md_H5File[pdbid]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms
atoms_protein["x"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 0]
atoms_protein["y"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 1]
atoms_protein["z"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 2]
atoms_protein["element"] = md_H5File[pdbid]["atoms_element"][:][:cutoff]
item = {}
item["scores"] = 0
item["id"] = pdbid
item["atoms_protein"] = atoms_protein
transform = GNNTransformMD()
data_item = transform(item)
adaptability = model(data_item)
adaptability = adaptability.detach().numpy()
data = []
for i in range(adaptability.shape[0]):
data.append([i, atom_mapping[atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1], atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]])
topN = 100
topN_ind = np.argsort(adaptability)[::-1][:topN]
pdb = open(pdb_file.name, "r").read()
view = py3Dmol.view(width=600, height=400)
view.setBackgroundColor('white')
view.addModel(pdb, "pdb")
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
for i in range(topN):
view.addSphere({'center':{'x':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],'z':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")]},'radius':adaptability[topN_ind[i]]/1.5,'color':'orange','alpha':0.75})
view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html> {output} </html>""" # do not use ' in this input
return f"""<iframe style="width: 100%; height:420px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability'])
callback = gr.CSVLogger()
"""
def run():
with gr.Blocks() as demo:
gr.Markdown("# Protein Adaptability Prediction")
#text_input = gr.Textbox()
#text_output = gr.Textbox()
#text_button = gr.Button("Flip")
inp = gr.Textbox(placeholder="PDB Code or upload file below", label="Input structure")
pdb_file = gr.File(label="PDB File Upload")
#with gr.Row():
# helix = gr.ColorPicker(label="helix")
# sheet = gr.ColorPicker(label="sheet")
# loop = gr.ColorPicker(label="loop")
single_btn = gr.Button(label="Run")
with gr.Row():
html = gr.HTML()
with gr.Row():
dataframe = gr.Dataframe()
single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe])
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run() |