Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import py3Dmol | |
from Bio.PDB import * | |
import numpy as np | |
from Bio.PDB import PDBParser | |
import pandas as pd | |
import torch | |
import os | |
from MDmodel import GNN_MD | |
import h5py | |
from transformMD import GNNTransformMD | |
# JavaScript functions | |
resid_hover = """function(atom,viewer) {{ | |
if(!atom.label) {{ | |
atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial, | |
{{position: atom, backgroundColor: 'mintcream', fontColor:'black'}}); | |
}} | |
}}""" | |
hover_func = """ | |
function(atom,viewer) { | |
if(!atom.label) { | |
atom.label = viewer.addLabel(atom.interaction, | |
{position: atom, backgroundColor: 'black', fontColor:'white'}); | |
} | |
}""" | |
unhover_func = """ | |
function(atom,viewer) { | |
if(atom.label) { | |
viewer.removeLabel(atom.label); | |
delete atom.label; | |
} | |
}""" | |
atom_mapping = {0:'H', 1:'C', 2:'N', 3:'O', 4:'F', 5:'P', 6:'S', 7:'CL', 8:'BR', 9:'I', 10: 'UNK'} | |
model = GNN_MD(11, 64) | |
state_dict = torch.load( | |
"best_weights_rep0.pt", | |
map_location=torch.device("cpu"), | |
)["model_state_dict"] | |
model.load_state_dict(state_dict) | |
model = model.to('cpu') | |
model.eval() | |
def get_pdb(pdb_code="", filepath=""): | |
try: | |
return filepath.name | |
except AttributeError as e: | |
if pdb_code is None or pdb_code == "": | |
return None | |
else: | |
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") | |
return f"{pdb_code}.pdb" | |
def get_offset(pdb): | |
pdb_multiline = pdb.split("\n") | |
for line in pdb_multiline: | |
if line.startswith("ATOM"): | |
return int(line[22:27]) | |
def predict(pdb_code, pdb_file): | |
#path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file) | |
#pdb = open(path_to_pdb, "r").read() | |
# switch to misato env if not running from container | |
mdh5_file = "inference_for_md.hdf5" | |
md_H5File = h5py.File(mdh5_file) | |
column_names = ["x", "y", "z", "element"] | |
atoms_protein = pd.DataFrame(columns = column_names) | |
cutoff = md_H5File["11GS"]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms | |
atoms_protein["x"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 0] | |
atoms_protein["y"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 1] | |
atoms_protein["z"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 2] | |
atoms_protein["element"] = md_H5File["11GS"]["atoms_element"][:][:cutoff] | |
item = {} | |
item["scores"] = 0 | |
item["id"] = "11GS" | |
item["atoms_protein"] = atoms_protein | |
transform = GNNTransformMD() | |
data_item = transform(item) | |
adaptability = model(data_item) | |
adaptability = adaptability.detach().numpy() | |
data = [] | |
for i in range(adaptability.shape[0]): | |
data.append([i, atom_mapping(atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1), atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]]) | |
topN = 100 | |
topN_ind = np.argsort(adaptability)[::-1][:topN] | |
pdb = open(pdb_file.name, "r").read() | |
view = py3Dmol.view(width=600, height=400) | |
view.setBackgroundColor('white') | |
view.addModel(pdb, "pdb") | |
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}}) | |
for i in range(topN): | |
view.addSphere({'center':{'x':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],'z':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")]},'radius':adaptability[topN_ind[i]]/1.5,'color':'orange','alpha':0.75}) | |
view.zoomTo() | |
output = view._make_html().replace("'", '"') | |
x = f"""<!DOCTYPE html><html> {output} </html>""" # do not use ' in this input | |
return f"""<iframe style="width: 100%; height:420px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability']) | |
callback = gr.CSVLogger() | |
with gr.Blocks() as demo: | |
gr.Markdown("# Protein Adaptability Prediction") | |
#text_input = gr.Textbox() | |
#text_output = gr.Textbox() | |
#text_button = gr.Button("Flip") | |
inp = gr.Textbox(placeholder="PDB Code or upload file below", label="Input structure") | |
pdb_file = gr.File(label="PDB File Upload") | |
#with gr.Row(): | |
# helix = gr.ColorPicker(label="helix") | |
# sheet = gr.ColorPicker(label="sheet") | |
# loop = gr.ColorPicker(label="loop") | |
single_btn = gr.Button(label="Run") | |
with gr.Row(): | |
html = gr.HTML() | |
with gr.Row(): | |
dataframe = gr.Dataframe() | |
single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe]) | |
demo.launch(debug=True) |