Main file added
Browse files- DeFogify_Main.py +52 -0
DeFogify_Main.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
def dark_channel(img, size=15):
|
6 |
+
r, g, b = cv2.split(img)
|
7 |
+
min_img = cv2.min(r, cv2.min(g, b))
|
8 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
|
9 |
+
dc_img = cv2.erode(min_img, kernel)
|
10 |
+
return dc_img
|
11 |
+
|
12 |
+
def get_atmo(img, percent=0.001):
|
13 |
+
mean_perpix = np.mean(img, axis=2).reshape(-1)
|
14 |
+
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
|
15 |
+
return np.mean(mean_topper)
|
16 |
+
|
17 |
+
def get_trans(img, atom, w=0.95):
|
18 |
+
x = img / atom
|
19 |
+
t = 1 - w * dark_channel(x, 15)
|
20 |
+
return t
|
21 |
+
|
22 |
+
def guided_filter(p, i, r, e):
|
23 |
+
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
|
24 |
+
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
|
25 |
+
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
|
26 |
+
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
|
27 |
+
var_I = corr_I - mean_I * mean_I
|
28 |
+
cov_Ip = corr_Ip - mean_I * mean_p
|
29 |
+
a = cov_Ip / (var_I + e)
|
30 |
+
b = mean_p - a * mean_I
|
31 |
+
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
|
32 |
+
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
|
33 |
+
q = mean_a * i + mean_b
|
34 |
+
return q
|
35 |
+
|
36 |
+
def dehaze(image):
|
37 |
+
img = image.astype('float64') / 255
|
38 |
+
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype('float64') / 255
|
39 |
+
|
40 |
+
atom = get_atmo(img)
|
41 |
+
trans = get_trans(img, atom)
|
42 |
+
trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
|
43 |
+
trans_guided = cv2.max(trans_guided, 0.25)
|
44 |
+
|
45 |
+
result = np.empty_like(img)
|
46 |
+
for i in range(3):
|
47 |
+
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
|
48 |
+
|
49 |
+
return (result * 255).astype(np.uint8) # expected images in the uint8 format (pixel values between 0 and 255)
|
50 |
+
|
51 |
+
PixelDehazer = gr.Interface(fn=dehaze, inputs=gr.Image(type="numpy"), outputs="image") # passed image as numpy array
|
52 |
+
PixelDehazer.launch()
|