Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Load a pre-trained TensorFlow model (replace with your model path)
|
9 |
+
model = tf.keras.applications.MobileNetV2(weights="imagenet")
|
10 |
+
|
11 |
+
def preprocess_image(image):
|
12 |
+
img = np.array(image)
|
13 |
+
img = cv2.resize(img, (224, 224))
|
14 |
+
img = tf.keras.applications.mobilenet_v2.preprocess_input(img)
|
15 |
+
return np.expand_dims(img, axis=0)
|
16 |
+
|
17 |
+
def classify_frame(frame):
|
18 |
+
processed_frame = preprocess_image(frame)
|
19 |
+
predictions = model.predict(processed_frame)
|
20 |
+
decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions, top=1)[0]
|
21 |
+
return decoded_predictions[0][1]
|
22 |
+
|
23 |
+
def process_video(video):
|
24 |
+
result = ""
|
25 |
+
cap = cv2.VideoCapture(video)
|
26 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
27 |
+
frame_interval = frame_count // 10 # Analyze 10 frames evenly spaced throughout the video
|
28 |
+
|
29 |
+
for i in range(0, frame_count, frame_interval):
|
30 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
31 |
+
ret, frame = cap.read()
|
32 |
+
if not ret:
|
33 |
+
break
|
34 |
+
|
35 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
36 |
+
image = Image.fromarray(frame_rgb)
|
37 |
+
label = classify_frame(image)
|
38 |
+
|
39 |
+
if "baseball" in label.lower():
|
40 |
+
result = "The runner is out"
|
41 |
+
break
|
42 |
+
|
43 |
+
cap.release()
|
44 |
+
if result == "":
|
45 |
+
result = "The runner is safe"
|
46 |
+
|
47 |
+
return result
|
48 |
+
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=process_video,
|
51 |
+
inputs=gr.inputs.Video(type="mp4"),
|
52 |
+
outputs="text",
|
53 |
+
title="Baseball Runner Status",
|
54 |
+
description="Upload a baseball video to determine if the runner is out or safe."
|
55 |
+
)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
iface.launch()
|