Spaces:
Build error
Build error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import copy
|
9 |
+
import time
|
10 |
+
import requests
|
11 |
+
import io
|
12 |
+
import numpy as np
|
13 |
+
import re
|
14 |
+
|
15 |
+
import ipdb
|
16 |
+
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
from vilt.config import ex
|
20 |
+
from vilt.modules import ViLTransformerSS
|
21 |
+
|
22 |
+
from vilt.modules.objectives import cost_matrix_cosine, ipot
|
23 |
+
from vilt.transforms import pixelbert_transform
|
24 |
+
from vilt.datamodules.datamodule_base import get_pretrained_tokenizer
|
25 |
+
|
26 |
+
|
27 |
+
@ex.automain
|
28 |
+
def main(_config):
|
29 |
+
_config = copy.deepcopy(_config)
|
30 |
+
|
31 |
+
loss_names = {
|
32 |
+
"itm": 0,
|
33 |
+
"mlm": 0.5,
|
34 |
+
"mpp": 0,
|
35 |
+
"vqa": 0,
|
36 |
+
"imgcls": 0,
|
37 |
+
"nlvr2": 0,
|
38 |
+
"irtr": 0,
|
39 |
+
"arc": 0,
|
40 |
+
}
|
41 |
+
tokenizer = get_pretrained_tokenizer(_config["tokenizer"])
|
42 |
+
|
43 |
+
_config.update(
|
44 |
+
{
|
45 |
+
"loss_names": loss_names,
|
46 |
+
}
|
47 |
+
)
|
48 |
+
|
49 |
+
model = ViLTransformerSS(_config)
|
50 |
+
model.setup("test")
|
51 |
+
model.eval()
|
52 |
+
|
53 |
+
device = "cuda:0" if _config["num_gpus"] > 0 else "cpu"
|
54 |
+
model.to(device)
|
55 |
+
|
56 |
+
def infer(url, mp_text, hidx):
|
57 |
+
try:
|
58 |
+
res = requests.get(url)
|
59 |
+
image = Image.open(io.BytesIO(res.content)).convert("RGB")
|
60 |
+
img = pixelbert_transform(size=384)(image)
|
61 |
+
img = img.unsqueeze(0).to(device)
|
62 |
+
except:
|
63 |
+
return False
|
64 |
+
|
65 |
+
batch = {"text": [""], "image": [None]}
|
66 |
+
tl = len(re.findall("\[MASK\]", mp_text))
|
67 |
+
inferred_token = [mp_text]
|
68 |
+
batch["image"][0] = img
|
69 |
+
|
70 |
+
with torch.no_grad():
|
71 |
+
for i in range(tl):
|
72 |
+
batch["text"] = inferred_token
|
73 |
+
encoded = tokenizer(inferred_token)
|
74 |
+
batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
|
75 |
+
batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
|
76 |
+
batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)
|
77 |
+
encoded = encoded["input_ids"][0][1:-1]
|
78 |
+
infer = model(batch)
|
79 |
+
mlm_logits = model.mlm_score(infer["text_feats"])[0, 1:-1]
|
80 |
+
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
|
81 |
+
mlm_values[torch.tensor(encoded) != 103] = 0
|
82 |
+
select = mlm_values.argmax().item()
|
83 |
+
encoded[select] = mlm_ids[select].item()
|
84 |
+
inferred_token = [tokenizer.decode(encoded)]
|
85 |
+
|
86 |
+
selected_token = ""
|
87 |
+
encoded = tokenizer(inferred_token)
|
88 |
+
|
89 |
+
if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]):
|
90 |
+
with torch.no_grad():
|
91 |
+
batch["text"] = inferred_token
|
92 |
+
batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
|
93 |
+
batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
|
94 |
+
batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)
|
95 |
+
infer = model(batch)
|
96 |
+
txt_emb, img_emb = infer["text_feats"], infer["image_feats"]
|
97 |
+
txt_mask, img_mask = (
|
98 |
+
infer["text_masks"].bool(),
|
99 |
+
infer["image_masks"].bool(),
|
100 |
+
)
|
101 |
+
for i, _len in enumerate(txt_mask.sum(dim=1)):
|
102 |
+
txt_mask[i, _len - 1] = False
|
103 |
+
txt_mask[:, 0] = False
|
104 |
+
img_mask[:, 0] = False
|
105 |
+
txt_pad, img_pad = ~txt_mask, ~img_mask
|
106 |
+
|
107 |
+
cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
|
108 |
+
joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
|
109 |
+
cost.masked_fill_(joint_pad, 0)
|
110 |
+
|
111 |
+
txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1, keepdim=False)).to(
|
112 |
+
dtype=cost.dtype
|
113 |
+
)
|
114 |
+
img_len = (img_pad.size(1) - img_pad.sum(dim=1, keepdim=False)).to(
|
115 |
+
dtype=cost.dtype
|
116 |
+
)
|
117 |
+
T = ipot(
|
118 |
+
cost.detach(),
|
119 |
+
txt_len,
|
120 |
+
txt_pad,
|
121 |
+
img_len,
|
122 |
+
img_pad,
|
123 |
+
joint_pad,
|
124 |
+
0.1,
|
125 |
+
1000,
|
126 |
+
1,
|
127 |
+
)
|
128 |
+
|
129 |
+
plan = T[0]
|
130 |
+
plan_single = plan * len(txt_emb)
|
131 |
+
cost_ = plan_single.t()
|
132 |
+
|
133 |
+
cost_ = cost_[hidx][1:].cpu()
|
134 |
+
|
135 |
+
patch_index, (H, W) = infer["patch_index"]
|
136 |
+
heatmap = torch.zeros(H, W)
|
137 |
+
for i, pidx in enumerate(patch_index[0]):
|
138 |
+
h, w = pidx[0].item(), pidx[1].item()
|
139 |
+
heatmap[h, w] = cost_[i]
|
140 |
+
|
141 |
+
heatmap = (heatmap - heatmap.mean()) / heatmap.std()
|
142 |
+
heatmap = np.clip(heatmap, 1.0, 3.0)
|
143 |
+
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
|
144 |
+
|
145 |
+
_w, _h = image.size
|
146 |
+
overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize(
|
147 |
+
(_w, _h), resample=Image.NEAREST
|
148 |
+
)
|
149 |
+
image_rgba = image.copy()
|
150 |
+
image_rgba.putalpha(overlay)
|
151 |
+
image = image_rgba
|
152 |
+
|
153 |
+
selected_token = tokenizer.convert_ids_to_tokens(
|
154 |
+
encoded["input_ids"][0][hidx]
|
155 |
+
)
|
156 |
+
|
157 |
+
return [np.array(image), inferred_token[0], selected_token]
|
158 |
+
|
159 |
+
inputs = [
|
160 |
+
gr.inputs.Textbox(
|
161 |
+
label="Url of an image.",
|
162 |
+
lines=5,
|
163 |
+
),
|
164 |
+
gr.inputs.Textbox(label="Caption with [MASK] tokens to be filled.", lines=5),
|
165 |
+
gr.inputs.Slider(
|
166 |
+
minimum=0,
|
167 |
+
maximum=38,
|
168 |
+
step=1,
|
169 |
+
label="Index of token for heatmap visualization (ignored if zero)",
|
170 |
+
),
|
171 |
+
]
|
172 |
+
outputs = [
|
173 |
+
gr.outputs.Image(label="Image"),
|
174 |
+
gr.outputs.Textbox(label="description"),
|
175 |
+
gr.outputs.Textbox(label="selected token"),
|
176 |
+
]
|
177 |
+
|
178 |
+
interface = gr.Interface(
|
179 |
+
fn=infer,
|
180 |
+
inputs=inputs,
|
181 |
+
outputs=outputs,
|
182 |
+
server_name="0.0.0.0",
|
183 |
+
server_port=8888,
|
184 |
+
examples=[
|
185 |
+
[
|
186 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
187 |
+
"a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].",
|
188 |
+
0,
|
189 |
+
],
|
190 |
+
[
|
191 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
192 |
+
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
|
193 |
+
4,
|
194 |
+
],
|
195 |
+
[
|
196 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
197 |
+
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
|
198 |
+
11,
|
199 |
+
],
|
200 |
+
[
|
201 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
202 |
+
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
|
203 |
+
15,
|
204 |
+
],
|
205 |
+
[
|
206 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
207 |
+
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
|
208 |
+
18,
|
209 |
+
],
|
210 |
+
[
|
211 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
|
212 |
+
"a room with a [MASK], a [MASK], a [MASK], and a [MASK].",
|
213 |
+
0,
|
214 |
+
],
|
215 |
+
[
|
216 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
|
217 |
+
"a room with a rug, a chair, a painting, and a plant.",
|
218 |
+
5,
|
219 |
+
],
|
220 |
+
[
|
221 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
|
222 |
+
"a room with a rug, a chair, a painting, and a plant.",
|
223 |
+
8,
|
224 |
+
],
|
225 |
+
[
|
226 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
|
227 |
+
"a room with a rug, a chair, a painting, and a plant.",
|
228 |
+
11,
|
229 |
+
],
|
230 |
+
[
|
231 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
|
232 |
+
"a room with a rug, a chair, a painting, and a plant.",
|
233 |
+
15,
|
234 |
+
],
|
235 |
+
],
|
236 |
+
)
|
237 |
+
|
238 |
+
interface.launch(debug=True)
|