MWilinski's picture
fix
d61a0b2
raw
history blame
1.43 kB
import gradio as gr
from PIL import Image
import numpy as np
from gradio import components
import torchvision
from torchvision.models.detection import (
maskrcnn_resnet50_fpn,
MaskRCNN_ResNet50_FPN_Weights,
)
import torchvision.transforms.functional as F
import torch
from torchvision.utils import draw_segmentation_masks
weights = MaskRCNN_ResNet50_FPN_Weights.DEFAULT
transforms = weights.transforms()
model = maskrcnn_resnet50_fpn(weights=weights, progress=False)
model = model.eval()
def segment_and_show(image):
# abc
input_image = Image.fromarray(image)
input_tensor = torch.tensor(np.array(input_image))
input_tensor = input_tensor.permute(2, 0, 1)
input_image = transforms(input_image)
output = model([input_image])[0]
proba_threshold = 0.5
masks = output["masks"] > proba_threshold
masks = masks.squeeze(1)
image_with_segmasks = draw_segmentation_masks(input_tensor, masks, alpha=0.7)
return np.array(F.to_pil_image(image_with_segmasks))
default_image = Image.open("demo.jpeg")
iface = gr.Interface(
fn=segment_and_show,
inputs=components.Image(value=default_image, sources=["upload", "clipboard"]),
outputs=components.Image(type="pil"),
title="Urban Autonomy Instance Segmentation Demo",
description="Upload an image or use the default to see the instance segmentation model in action.",
)
if __name__ == "__main__":
iface.launch()