import argparse import os from pathlib import Path import logging import re_matching logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.basicConfig( level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" ) logger = logging.getLogger(__name__) import librosa import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from clap_wrapper import get_clap_audio_feature, get_clap_text_feature import uuid from flask import Flask, request, jsonify, render_template_string from flask_cors import CORS import gradio as gr import utils from config import config import torch import commons from text import cleaned_text_to_sequence, get_bert from text.cleaner import clean_text import utils from models import SynthesizerTrn from text.symbols import symbols import sys from scipy.io.wavfile import write from threading import Thread net_g = None device = ( "cuda:0" if torch.cuda.is_available() else ( "mps" if sys.platform == "darwin" and torch.backends.mps.is_available() else "cpu" ) ) #device = "cpu" BandList = { "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], "Roselia":["友希那","紗夜","リサ","燐子","あこ"], "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], "MyGo":["燈","愛音","そよ","立希","楽奈"], "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] } def get_net_g(model_path: str, device: str, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): style_text = None if style_text == "" else style_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_ori = get_bert( norm_text, word2ph, language_str, device, style_text, style_weight ) del word2ph assert bert_ori.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert_ori ja_bert = torch.randn(1024, len(phone)) en_bert = torch.randn(1024, len(phone)) elif language_str == "JP": bert = torch.randn(1024, len(phone)) ja_bert = bert_ori en_bert = torch.randn(1024, len(phone)) elif language_str == "EN": bert = torch.randn(1024, len(phone)) ja_bert = torch.randn(1024, len(phone)) en_bert = bert_ori else: raise ValueError("language_str should be ZH, JP or EN") assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, en_bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, ): language= 'JP' if is_japanese(text) else 'ZH' bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) def inferAPI( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, ): language= 'JP' if is_japanese(text) else 'ZH' bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() unique_filename = f"temp{uuid.uuid4()}.wav" write(unique_filename, 44100, audio) return unique_filename def is_japanese(string): for ch in string: if ord(ch) > 0x3040 and ord(ch) < 0x30FF: return True return False def loadmodel(model): try: _ = net_g.eval() _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) return "success" except: return "error" Flaskapp = Flask(__name__) CORS(Flaskapp) @Flaskapp.route('/') @Flaskapp.route('/') def tts(): global last_text, last_model speaker = request.args.get('speaker') sdp_ratio = float(request.args.get('sdp_ratio', 0.2)) noise_scale = float(request.args.get('noise_scale', 0.6)) noise_scale_w = float(request.args.get('noise_scale_w', 0.8)) length_scale = float(request.args.get('length_scale', 1)) style_weight = float(request.args.get('style_weight', 0.7)) style_text = request.args.get('style_text', 'happy') text = request.args.get('text') is_chat = request.args.get('is_chat', 'false').lower() == 'true' model = request.args.get('model',modelPaths[-1]) if not speaker or not text: return render_template_string("""