import torch import re import gradio as gr from pathlib import Path from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel def predict(image, max_length=30, num_beams=4): image = image.convert('RGB') pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) with torch.no_grad(): caption_ids = model.generate(pixel_values.cpu())[0] caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True) return caption_text model_path = "MahsaShahidi/Persian-Image-Captioning" device = "cpu" # Load model. model = VisionEncoderDecoderModel.from_pretrained(model_path) model.to(device) print("Loaded model") feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") print("Loaded feature_extractor") tokenizer = AutoTokenizer.from_pretrained('HooshvareLab/bert-fa-base-uncased-clf-persiannews') print("Loaded tokenizer") title = "Persian Image Captioning" description = "" input = gr.inputs.Image(label="Image to search", type = 'pil', optional=False) output = gr.outputs.Textbox(type="auto",label="Captions") article = "This HuggingFace Space presents a demo for Persian Image Camptioning on VIT as its Encoder and ParsBERT (v2.0) as its Decoder" images = [f"./image-{i}.jpg" for i in range(1,4)] interface = gr.Interface( fn=predict, inputs = input, outputs=output, examples = images, title=title, description=article, ) interface.launch()