File size: 6,030 Bytes
3d60af0 2454c79 3d60af0 2454c79 3d60af0 2454c79 3d60af0 2454c79 3d60af0 2454c79 3d60af0 e5c715a 3d60af0 e5c715a 3d60af0 2454c79 3d60af0 2454c79 3d60af0 2454c79 3d60af0 2454c79 3d60af0 e5c715a 3d60af0 e5c715a 3d60af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote
import re
# Define the model and tokenizer loading
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 10
# Function to generate predictions using the model
def get_prediction(question):
input_text = model_prompt + question
input_tokens = tokenizer.tokenize(input_text)
results = generator.generate_batch(
[input_tokens],
max_length=512,
sampling_temperature=0.7,
sampling_topk=40,
)
output_tokens = results[0].sequences[0]
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
return predicted_answer
# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
lines = prediction.strip().split('\n')
answer = None
steps = []
for line in lines:
# Check for "Answer:" or "answer:"
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
if match:
answer = match.group(1).strip()
else:
steps.append(line)
if answer is None:
# If no "Answer:" found, assume last line is the answer
answer = lines[-1].strip()
steps = lines[:-1]
steps_text = '\n'.join(steps).strip()
return answer, steps_text
# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
all_predictions = []
all_answers = []
steps_list = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer, steps = parse_prediction(prediction)
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(steps)
# Get the majority voted answer
majority_voted_ans = get_majority_vote(all_answers)
# Find the steps corresponding to the majority voted answer
for i, ans in enumerate(all_answers):
if ans == majority_voted_ans:
steps_solution = steps_list[i]
break
else:
steps_solution = "No steps found"
return majority_voted_ans, steps_solution
# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
final_answer, steps_solution = majority_vote_with_steps(question, iterations)
return {
"Question": question,
"Majority-Voted Answer": final_answer,
"Steps to Solve": steps_solution,
"Correct Solution": correct_answer
}
# Custom CSS for enhanced design (unchanged)
custom_css = """
body {
background-color: #fafafa;
font-family: 'Open Sans', sans-serif;
}
.gradio-container {
background-color: #ffffff;
border: 3px solid #007acc;
border-radius: 15px;
padding: 20px;
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
max-width: 800px;
margin: 50px auto;
}
h1 {
font-family: 'Poppins', sans-serif;
color: #007acc;
font-weight: bold;
font-size: 32px;
text-align: center;
margin-bottom: 20px;
}
p {
font-family: 'Roboto', sans-serif;
font-size: 18px;
color: #333;
text-align: center;
margin-bottom: 15px;
}
input, textarea {
font-family: 'Montserrat', sans-serif;
font-size: 16px;
padding: 10px;
border: 2px solid #007acc;
border-radius: 10px;
background-color: #f1f8ff;
margin-bottom: 15px;
}
#math_question, #correct_answer {
font-size: 20px;
font-family: 'Poppins', sans-serif;
font-weight: 500px;
color: #007acc;
margin-bottom: 5px;
display: inline-block;
}
textarea {
min-height: 150px;
}
.gr-button-primary {
background-color: #007acc !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-primary:hover {
background-color: #005f99 !important;
}
.gr-button-secondary {
background-color: #f44336 !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-secondary:hover {
background-color: #c62828 !important;
}
.gr-output {
background-color: #e0f7fa;
border: 2px solid #007acc;
border-radius: 10px;
padding: 15px;
font-size: 16px;
font-family: 'Roboto', sans-serif;
font-weight: bold;
color: #00796b;
}
"""
# Gradio app setup
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
gr.Textbox(label="✅ Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"),
],
outputs=[
gr.JSON(label="📊 Results"), # Display the results in a JSON format
],
title="🔢 Math Question Solver",
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
css=custom_css # Apply custom CSS
)
if __name__ == "__main__":
interface.launch()
|