import os import gradio as gr from pinecone import Pinecone, ServerlessSpec from langchain_community.llms import Replicate from langchain_pinecone import PineconeVectorStore from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain_huggingface.embeddings import HuggingFaceEmbeddings from langchain.chains import ConversationalRetrievalChain import time # Retrieve API keys from environment variables replicate_api_token = os.getenv('REPLICATE_API_TOKEN') pinecone_api_key = os.getenv('PINECONE_API_KEY') # Initialize Pinecone pc = Pinecone(api_key=pinecone_api_key) # Function to process PDF and set up chatbot def process_pdf(pdf_doc): # Use the file path directly filename = pdf_doc.name # Load PDF and create index loader = PyPDFLoader(filename) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings() index_name = "pdfchatbot" existing_indexes = [index_info["name"] for index_info in pc.list_indexes()] if index_name in existing_indexes: pc.delete_index(index_name) while index_name in [index_info["name"] for index_info in pc.list_indexes()]: time.sleep(1) pc.create_index( name=index_name, dimension=768, metric="cosine", spec=ServerlessSpec(cloud="aws", region="us-east-1"), ) while not pc.describe_index(index_name).status["ready"]: time.sleep(1) index = pc.Index(index_name) vectordb = PineconeVectorStore.from_documents(texts, embeddings, index_name=index_name) llm = Replicate( model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5", input={"temperature": 0.75, "max_length": 3000} ) global qa_chain qa_chain = ConversationalRetrievalChain.from_llm( llm, vectordb.as_retriever(search_kwargs={'k': 2}), return_source_documents=True ) return "PDF processed and ready for queries." # Function to handle user queries def query(history, text): langchain_history = [(msg[1], history[i+1][1] if i+1 < len(history) else "") for i, msg in enumerate(history) if i % 2 == 0] result = qa_chain({"question": text, "chat_history": langchain_history}) new_history = history + [(text, result['answer'])] return new_history, "" # Define the Gradio interface css = """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """