import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, refine, high_noise_frac):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
if Model == "PhotoReal":
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
return image
else:
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "Animagine XL 3.0":
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
animagine.enable_xformers_memory_efficient_attention()
animagine = animagine.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
torch.cuda.empty_cache()
animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
animagine.enable_xformers_memory_efficient_attention()
animagine = animagine.to(device)
torch.cuda.empty_cache()
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
return image
else:
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
if Model == "SDXL 1.0":
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
sdxl.enable_xformers_memory_efficient_attention()
sdxl = sdxl.to(device)
torch.cuda.empty_cache()
if refine == "Yes":
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
torch.cuda.empty_cache()
sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
sdxl.enable_xformers_memory_efficient_attention()
sdxl = sdxl.to(device)
torch.cuda.empty_cache()
refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
torch.cuda.empty_cache()
return refined
else:
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
torch.cuda.empty_cache()
return image
return image
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 3.0', 'SDXL 1.0',], value='PhotoReal', label='Choose Model'),
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'),
gr.Slider(5, maximum=100, value=50, step=5, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.1 with SDXL 1.0 Refiner - GPU",
description="
Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets.
SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
PayPal: https://www.paypal.me/ManjushriBodhisattva
ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6
Code Monkey: Manjushri").launch(debug=True, max_threads=80)