File size: 2,017 Bytes
f4fd128
a8e0680
f4fd128
 
 
c631f61
47546a1
5f6827d
f4fd128
65d6f71
f4fd128
 
 
 
 
 
 
47546a1
f4fd128
65d6f71
f4fd128
47546a1
f4fd128
 
47546a1
 
 
5f6827d
 
5a94a1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
import modin.pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import DiffusionPipeline


device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo")
pipe = pipe.to(device)

def resize(value,img):
    img = Image.open(img)
    img = img.resize((value,value))
    return img

def infer(source_img, prompt, steps, seed, Strength):
    generator = torch.Generator(device).manual_seed(seed)     
    source_image = resize(512, source_img)
    source_image.save('source.png')
    image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0]
    return image

gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
    #gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
    gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
    gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), 
    gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], 
    outputs='image', title = "Stable Diffusion XL 1.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()