|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from datasets import load_dataset |
|
from diffusers import StableDiffusionImg2ImgPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, revision="fp16", safety_checker=None) if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", safety_checker=None) |
|
pipe = pipe.to(device) |
|
|
|
def resize(value,img): |
|
img = Image.open(img) |
|
img = img.resize((value,value)) |
|
return img |
|
|
|
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength): |
|
generator = torch.Generator(device).manual_seed(seed) |
|
source_image = resize(768, source_img) |
|
source_image.save('source.png') |
|
image = pipe(prompt, negative_prompt=negative_prompt, source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0] |
|
return image |
|
|
|
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'), |
|
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'), |
|
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'), |
|
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), |
|
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], |
|
outputs='image', title = "Stable Diffusion 2.1 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.1 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch() |