Marathon23's picture
Update app.py
c35ccd6 verified
# app.py
import os
import openai
import gradio as gr
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader, PyPDFLoader
from langchain.vectorstores import Chroma
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.chat_models import ChatOpenAI
import shutil # 用於文件複製
import logging
# 設置日誌配置
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 獲取 OpenAI API 密鑰(初始不使用固定密鑰)
api_key_env = os.getenv("OPENAI_API_KEY")
if api_key_env:
openai.api_key = api_key_env
logger.info("OpenAI API 密鑰已設置。")
else:
logger.info("未設置固定的 OpenAI API 密鑰。將使用使用者提供的密鑰。")
# 確保向量資料庫目錄存在且有寫入權限
VECTORDB_DIR = os.path.abspath("./data")
os.makedirs(VECTORDB_DIR, exist_ok=True)
os.chmod(VECTORDB_DIR, 0o755) # 設置適當的權限
logger.info(f"VECTORDB_DIR set to: {VECTORDB_DIR}")
# 定義測試 PDF 加載器的函數
def test_pdf_loader(file_path, loader_type='PyMuPDFLoader'):
logger.info(f"Testing PDF loader ({loader_type}) with file: {file_path}")
try:
if loader_type == 'PyMuPDFLoader':
loader = PyMuPDFLoader(file_path)
elif loader_type == 'PyPDFLoader':
loader = PyPDFLoader(file_path)
else:
logger.error(f"Unknown loader type: {loader_type}")
return
loaded_docs = loader.load()
if loaded_docs:
logger.info(f"Successfully loaded {file_path} with {len(loaded_docs)} documents.")
logger.info(f"Document content (first 500 chars): {loaded_docs[0].page_content[:500]}")
else:
logger.error(f"No documents loaded from {file_path}.")
except Exception as e:
logger.error(f"Error loading {file_path} with {loader_type}: {e}")
# 定義載入和處理 PDF 文件的函數
def load_and_process_documents(file_paths, loader_type='PyMuPDFLoader', api_key=None):
if not api_key:
raise ValueError("未提供 OpenAI API 密鑰。")
documents = []
logger.info("開始載入上傳的 PDF 文件。")
for file_path in file_paths:
logger.info(f"載入 PDF 文件: {file_path}")
if not os.path.exists(file_path):
logger.error(f"文件不存在: {file_path}")
continue
try:
if loader_type == 'PyMuPDFLoader':
loader = PyMuPDFLoader(file_path)
elif loader_type == 'PyPDFLoader':
loader = PyPDFLoader(file_path)
else:
logger.error(f"Unknown loader type: {loader_type}")
continue
loaded_docs = loader.load()
if loaded_docs:
logger.info(f"載入 {file_path} 成功,包含 {len(loaded_docs)} 個文檔。")
# 打印第一個文檔的部分內容以確認
logger.info(f"第一個文檔內容: {loaded_docs[0].page_content[:500]}")
documents.extend(loaded_docs)
else:
logger.error(f"載入 {file_path} 但未找到任何文檔。")
except Exception as e:
logger.error(f"載入 {file_path} 時出現錯誤: {e}")
if not documents:
raise ValueError("沒有找到任何 PDF 文件或 PDF 文件無法載入。")
else:
logger.info(f"總共載入了 {len(documents)} 個文檔。")
# 分割長文本
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
documents = text_splitter.split_documents(documents)
logger.info(f"分割後的文檔數量: {len(documents)}")
if not documents:
raise ValueError("分割後的文檔列表為空。請檢查 PDF 文件內容。")
# 初始化向量資料庫
try:
embeddings = OpenAIEmbeddings(openai_api_key=api_key) # 使用使用者的 API 密鑰
logger.info("初始化 OpenAIEmbeddings 成功。")
except Exception as e:
raise ValueError(f"初始化 OpenAIEmbeddings 時出現錯誤: {e}")
try:
vectordb = Chroma.from_documents(
documents,
embedding=embeddings,
persist_directory=VECTORDB_DIR
)
logger.info("初始化 Chroma 向量資料庫成功。")
except Exception as e:
raise ValueError(f"初始化 Chroma 向量資料庫時出現錯誤: {e}")
return vectordb
# 定義聊天處理函數
def handle_query(user_message, chat_history, vectordb, api_key):
try:
if not user_message:
return chat_history
# 添加角色指令前綴
preface = """
指令: 以繁體中文回答問題,200字以內。你是一位專業心理學家與調酒師,專精於 MBTI 人格與經典調酒主題。
非相關問題,請回應:「目前僅支援 MBTI 分析與經典調酒主題。」。
"""
query = f"{preface} 查詢內容:{user_message}"
# 初始化 ConversationalRetrievalChain,並傳遞 openai_api_key
pdf_qa = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0.7, model="gpt-4", openai_api_key=api_key),
retriever=vectordb.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True
)
# 呼叫模型並處理查詢
result = pdf_qa.invoke({"question": query, "chat_history": chat_history})
# 檢查結果並更新聊天歷史
if "answer" in result:
chat_history = chat_history + [(user_message, result["answer"])]
else:
chat_history = chat_history + [(user_message, "抱歉,未能獲得有效回應。")]
return chat_history
except Exception as e:
logger.error(f"Error in handle_query: {e}")
return chat_history + [("系統", f"出現錯誤: {str(e)}")]
# 定義保存 API 密鑰的函數
def save_api_key(api_key, state):
if not api_key.startswith("sk-"):
return "請輸入有效的 OpenAI API 密鑰。", state
state['api_key'] = api_key
logger.info("使用者已保存自己的 OpenAI API 密鑰。")
return "API 密鑰已成功保存。您現在可以上傳 PDF 文件並開始提問。", state
# 定義 Gradio 的處理函數
def process_files(files, state):
logger.info("process_files called")
if files:
try:
# 檢查是否已保存 API 密鑰
api_key = state.get('api_key', None)
if not api_key:
logger.error("使用者未提供 OpenAI API 密鑰。")
return "請先在「設定 API 密鑰」標籤中輸入並保存您的 OpenAI API 密鑰。", state
logger.info(f"Received {len(files)} files")
saved_file_paths = []
for idx, file_data in enumerate(files):
# 為每個文件分配唯一的文件名
filename = f"uploaded_{idx}.pdf"
save_path = os.path.join(VECTORDB_DIR, filename)
with open(save_path, "wb") as f:
f.write(file_data)
# 確認文件是否存在並檢查文件大小
if os.path.exists(save_path):
file_size = os.path.getsize(save_path)
if file_size > 0:
logger.info(f"File successfully saved to: {save_path} (Size: {file_size} bytes)")
else:
logger.error(f"File saved to {save_path} is empty.")
raise ValueError(f"上傳的文件 {filename} 為空。")
else:
logger.error(f"Failed to save file to: {save_path}")
raise FileNotFoundError(f"無法保存文件到 {save_path}")
saved_file_paths.append(save_path)
# 測試 PDF 加載器,先用 PyMuPDFLoader,再用 PyPDFLoader
try:
test_pdf_loader(save_path, loader_type='PyMuPDFLoader')
except Exception as e:
logger.error(f"PyMuPDFLoader failed: {e}")
logger.info("Attempting to load with PyPDFLoader...")
test_pdf_loader(save_path, loader_type='PyPDFLoader')
# 列出 VECTORDB_DIR 中的所有文件
saved_files = os.listdir(VECTORDB_DIR)
logger.info(f"Files in VECTORDB_DIR ({VECTORDB_DIR}): {saved_files}")
# 列出文件大小
file_sizes = {file: os.path.getsize(os.path.join(VECTORDB_DIR, file)) for file in saved_files}
logger.info(f"File sizes in VECTORDB_DIR: {file_sizes}")
vectordb = load_and_process_documents(saved_file_paths, loader_type='PyMuPDFLoader', api_key=api_key)
state['vectordb'] = vectordb
return "PDF 文件已成功上傳並處理。您現在可以開始提問。", state
except Exception as e:
logger.error(f"Error in process_files: {e}")
return f"處理文件時出現錯誤: {e}", state
else:
return "請上傳至少一個 PDF 文件。", state
def chat_interface(user_message, chat_history, state):
vectordb = state.get('vectordb', None)
api_key = state.get('api_key', None)
if not vectordb:
return chat_history, state, "請先上傳 PDF 文件以進行處理。"
if not api_key:
return chat_history, state, "請先在「設定 API 密鑰」標籤中輸入並保存您的 OpenAI API 密鑰。"
# 處理查詢
updated_history = handle_query(user_message, chat_history, vectordb, api_key)
return updated_history, state, ""
# 設計 Gradio 介面
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>MBTI 與經典調酒 AI 助理</h1>")
# 定義共享的 state
state = gr.State({"vectordb": None, "api_key": None})
with gr.Tab("設定 API 密鑰"):
with gr.Row():
with gr.Column(scale=1):
api_key_input = gr.Textbox(
label="輸入您的 OpenAI API 密鑰",
placeholder="sk-...",
type="password",
interactive=True
)
save_api_key_btn = gr.Button("保存 API 密鑰")
api_key_status = gr.Textbox(label="狀態", interactive=False)
with gr.Tab("上傳 PDF 文件"):
with gr.Row():
with gr.Column(scale=1):
upload = gr.File(
file_count="multiple",
file_types=[".pdf"],
label="上傳 PDF 文件",
interactive=True,
type="binary" # 修改為 'binary'
)
upload_btn = gr.Button("上傳並處理")
upload_status = gr.Textbox(label="上傳狀態", interactive=False)
with gr.Tab("聊天機器人"):
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="請輸入您的問題...")
with gr.Column(scale=0.15, min_width=0):
submit_btn = gr.Button("提問")
# 綁定提問按鈕
submit_btn.click(
chat_interface,
inputs=[txt, chatbot, state],
outputs=[chatbot, state, txt]
)
# 綁定輸入框的提交事件
txt.submit(
chat_interface,
inputs=[txt, chatbot, state],
outputs=[chatbot, state, txt]
)
# 綁定保存 API 密鑰按鈕
save_api_key_btn.click(
save_api_key,
inputs=[api_key_input, state],
outputs=[api_key_status, state]
)
# 綁定上傳按鈕
upload_btn.click(
process_files,
inputs=[upload, state],
outputs=[upload_status, state]
)
# 啟動 Gradio 應用
demo.launch()