MariaK's picture
Updates for Audio course
d071597
raw
history blame
5.1 kB
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import requests
import re
import pandas as pd
from huggingface_hub import ModelCard
def make_clickable_model(model_name):
# remove user from model name
model_name_show = ' '.join(model_name.split('/')[1:])
link = "https://huggingface.co/" + model_name
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
def pass_emoji(passed):
if passed is True:
passed = "βœ…"
else:
passed = "❌"
return passed
api = HfApi()
def get_user_audio_classification_models(hf_username):
"""
List the user's Audio Classification models
:param hf_username: User HF username
"""
models = api.list_models(author=hf_username, filter=["audio-classification"])
user_model_ids = [x.modelId for x in models]
models_gtzan = []
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
if meta["datasets"] == ['marsyas/gtzan']:
models_gtzan.append(model)
return models_gtzan
def get_metadata(model_id):
"""
Get model metadata (contains evaluation data)
:param model_id
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def extract_accuracy(model_card_content):
"""
Extract the accuracy value from the models' model card
:param model_card_content: model card content
"""
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
match = re.search(accuracy_pattern, model_card_content)
if match:
accuracy = match.group(1)
return float(accuracy)
else:
return None
def parse_metrics_accuracy(model_id):
"""
Get model card and parse it
:param model_id: model id
"""
card = ModelCard.load(model_id)
return extract_accuracy(card.content)
def calculate_best_acc_result(user_model_ids):
"""
Calculate the best results of a unit
:param user_model_ids: RL models of a user
"""
best_result = -100
best_model = ""
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
accuracy = parse_metrics_accuracy(model)
if accuracy > best_result:
best_result = accuracy
best_model = meta['model-index'][0]["name"]
return best_result, best_model
def certification(hf_username):
results_certification = [
{
"unit": "Unit 4: Audio Classification",
"task": "audio-classification",
"baseline_metric": 0.87,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5: TBD",
"task": "TBD",
"baseline_metric": 0.99,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6: TBD",
"task": "TBD",
"baseline_metric": 0.99,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 7: TBD",
"task": "TBD",
"baseline_metric": 0.99,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
]
for unit in results_certification:
if unit["task"] == "audio-classification":
user_models = get_user_audio_classification_models(hf_username)
best_result, best_model_id = calculate_best_acc_result(user_models)
unit["best_result"] = best_result
unit["best_model_id"] = make_clickable_model(best_model_id)
if unit["best_result"] >= unit["baseline_metric"]:
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
else:
# TBD for other units
unit["passed"] = pass_emoji(unit["passed_"])
continue
print(results_certification)
df = pd.DataFrame(results_certification)
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
return df
with gr.Blocks() as demo:
gr.Markdown(f"""
# πŸ† Check your progress in the Audio Course πŸ†
You can check your progress here.
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
To pass an assignment, your model's metric should be equal or higher than the baseline metric
**When min_result = -100 it means that you just need to push a model to pass this hands-on.**
Just type your Hugging Face Username πŸ€— (in my case MariaK)
""")
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
check_progress_button = gr.Button(value="Check my progress")
output = gr.components.Dataframe(value=certification(hf_username))
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
demo.launch()