import os from openai import OpenAI import gradio as gr import socket hostname=socket.gethostname() IPAddr=socket.gethostbyname(hostname) print("Your Computer Name is:" + hostname) print("Your Computer IP Address is:" + IPAddr) DESCRIPTION = """ # Cloned from MediaTek Research Breeze-7B MediaTek Research Breeze-7B (hereinafter referred to as Breeze-7B) is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use. [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) is the base model for the Breeze-7B series. It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case. [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks. This App is cloned from [Demo-MR-Breeze-7B](https://huggingface.co/spaces/MediaTek-Research/Demo-MR-Breeze-7B) """ LICENSE = """ """ DEFAULT_SYSTEM_PROMPT = "You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan." API_URL = os.environ.get("API_URL") TOKEN = os.environ.get("TOKEN") TOKENIZER_REPO = "MediaTek-Research/Breeze-7B-Instruct-v1_0" MODEL_NAME = os.environ.get("MODEL_NAME") MAX_SEC = 30 MAX_INPUT_LENGTH = 5000 def chat_with_openai(model_name, system_message, user_message, temperature=0.5, max_tokens=1024, top_p=0.5): client = OpenAI( base_url=os.path.join(API_URL, "v1/"), api_key=TOKEN ) chat_completion = client.chat.completions.create( model=model_name, messages=[ { "role": "system", "content": system_message }, { "role": "user", "content": user_message } ], temperature=temperature, max_tokens=max_tokens, top_p=top_p, stream=True ) for message in chat_completion: yield message.choices[0].delta.content def refusal_condition(query): # 不要再問這些問題啦! query_remove_space = query.replace(' ', '').lower() is_including_tw = False for x in ['台灣', '台湾', 'taiwan', 'tw', '中華民國', '中华民国']: if x in query_remove_space: is_including_tw = True is_including_cn = False for x in ['中國', '中国', 'cn', 'china', '大陸', '內地', '大陆', '内地', '中華人民共和國', '中华人民共和国']: if x in query_remove_space: is_including_cn = True if is_including_tw and is_including_cn: return True for x in ['一個中國', '兩岸', '一中原則', '一中政策', '一个中国', '两岸', '一中原则']: if x in query_remove_space: return True return False with gr.Blocks() as demo: # Check if the API_URL and TOKEN are set if API_URL is None: raise gr.Error("API_URL is not set as an environment variable.") if TOKEN is None: raise gr.Error("TOKEN is not set as an environment variable.") if MODEL_NAME is None: raise gr.Error("MODEL_NAME is not set as an environment variable.") gr.Markdown(DESCRIPTION) system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=1) with gr.Accordion(label='Advanced options', open=False): max_new_tokens = gr.Slider( label='Max new tokens', minimum=32, maximum=2048, step=1, value=1024, ) temperature = gr.Slider( label='Temperature', minimum=0.01, maximum=0.5, step=0.01, value=0.01, ) top_p = gr.Slider( label='Top-p (nucleus sampling)', minimum=0.01, maximum=0.99, step=0.01, value=0.01, ) chatbot = gr.Chatbot(show_copy_button=True, show_share_button=True, ) with gr.Row(): msg = gr.Textbox( container=False, show_label=False, placeholder='Type a message...', scale=10, lines=6 ) submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('🔄 Retry', variant='secondary') undo_button = gr.Button('↩️ Undo', variant='secondary') clear = gr.Button('🗑️ Clear', variant='secondary') saved_input = gr.State() def user(user_message, history): return "", history + [[user_message, None]] def bot(history, max_new_tokens, temperature, top_p, system_prompt): chat_data = [] system_prompt = system_prompt.strip() if system_prompt: chat_data.append({"role": "system", "content": system_prompt}) for user_msg, assistant_msg in history: chat_data.append({"role": "user", "content": user_msg if user_msg is not None else ''}) chat_data.append({"role": "assistant", "content": assistant_msg if assistant_msg is not None else ''}) response = '[ERROR]' if refusal_condition(history[-1][0]): history = [['[安全拒答啟動]', '[安全拒答啟動] 請清除再開啟對話']] response = '[REFUSAL]' yield history else: r = chat_with_openai( MODEL_NAME, system_prompt, history[-1][0], temperature, max_new_tokens, top_p) if r is not None: for delta in r: if history[-1][1] is None: history[-1][1] = '' if delta is None: delta = '' history[-1][1] += delta yield history if history[-1][1].endswith(''): history[-1][1] = history[-1][1][:-4] yield history response = history[-1][1] if refusal_condition(history[-1][1]): history[-1][1] = history[-1][1] + '\n\n**[免責聲明: 此模型並未針對問答進行安全保護,因此語言模型的任何回應不代表 MediaTek Research 立場。]**' yield history else: del history[-1] yield history print('== Record ==\nQuery: {query}\nResponse: {response}'.format(query=repr(history[-1][0]), response=repr(history[-1][1]))) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot ) submit_button.click( user, [msg, chatbot], [msg, chatbot], queue=False ).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot ) def delete_prev_fn( history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: try: message, _ = history.pop() except IndexError: message = '' return history, message or '' def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]: history.append((message, '')) return history retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=bot, inputs=[ chatbot, max_new_tokens, temperature, top_p, system_prompt, ], outputs=chatbot, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=msg, api_name=False, queue=False, ) clear.click(lambda: None, None, chatbot, queue=False) gr.Markdown(LICENSE) demo.queue(default_concurrency_limit=10) demo.launch()