File size: 7,745 Bytes
8e62182
 
 
 
 
 
ced753a
8e62182
 
 
 
75fbfdf
8e62182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75fbfdf
 
 
 
8a28741
75fbfdf
 
 
 
 
 
 
 
 
8a28741
75fbfdf
ae18099
75fbfdf
ced753a
8a28741
ae18099
ced753a
 
8e62182
 
2a4d097
8e62182
 
 
 
 
 
2a4d097
 
75fbfdf
2a4d097
 
 
 
 
75fbfdf
2a4d097
 
 
8e62182
2a4d097
8e62182
 
 
ced753a
 
8e62182
 
 
 
ced753a
 
 
 
 
 
8e62182
ced753a
 
8e62182
 
 
 
 
 
 
 
 
 
 
ced753a
 
 
 
 
8e62182
 
 
ced753a
8e62182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced753a
 
 
 
8e62182
 
 
ced753a
 
8e62182
 
ced753a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import open_clip
import torch
import requests
import numpy as np
from PIL import Image
from io import BytesIO

# Sidebar content
sidebar_markdown = """

Note, this demo can classify 200 items. If you didn't find what you're looking for, reach out to us on our [Community](https://join.slack.com/t/marqo-community/shared_invite/zt-2iab0260n-QJrZLUSOJYUifVxf964Gdw) and request an item to be added.

## Documentation
πŸ“š [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion)

πŸ“ [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip)

## Code
πŸ’» [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP)

🀝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing)

πŸ€— [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6)

## Citation
If you use Marqo-FashionSigLIP or Marqo-FashionCLIP, please cite us:
```
@software{Jung_Marqo-FashionCLIP_and_Marqo-FashionSigLIP_2024,
author = {Jung, Myong Chol and Clark, Jesse},
month = aug,
title = {{Marqo-FashionCLIP and Marqo-FashionSigLIP}},
url = {https://github.com/marqo-ai/marqo-FashionCLIP},
version = {1.0.0},
year = {2024}
```
"""

# List of fashion items
items = [
    'abaya', 'anorak', 'apron', 'ball gown', 'bandanna', 'baseball cap',
    'beanie', 'belt', 'beret', 'Bermuda shorts', 'baby clothes', 
    'bib', 'bikini', 'blazer', 'blouse', 'boots', 'bow tie', 'boxer shorts', 'boxers', 'bra', 
    'bracelet', 'breeches', 'buckle', 'button', 'camouflage', 'cap', 'cape', 'cardigan', 'cloak', 'clogs', 
    'coat', 'corset', 'crown', 'cuff links', 'dress', 'dress shirt', 'dungarees', 'earmuffs', 
    'earrings', 'flannel shirt', 'flip-flops', 'fur coat', 'gilet', 'glasses', 'gloves', 'gown', 'handbag',
    'hat', 'Hawaiian shirt', 'helmet', 'hijab', 'high heels', 'hoodie', 'hospital gown', 'jacket', 
    'jeans', 'jewelry', 'jumper', 'jumpsuit', 'khakis', 'kilt', 'knickers', 'lab coat',
    'leather jacket', 'leggings', 'leotard', 'life jacket', 'lingerie', 'loafers',
    'miniskirt', 'mittens', 'necklace', 'nightgown', 'nightshirt', 'onesies','pajamas', 'pants', 
    'pantsuit', 'pantyhose', 'parka','polo shirt', 'poncho', 'purse', 'raincoat', 
    'ring', 'robe', 'rugby shirt', 'sandals', 'scarf', 'scrubs', 'shirt', 'shoes', 'shorts', 'skirt', 
    'slippers', 'sneakers', 'socks', 'spacesuit', 'stockings', 'stole', 'suit', 
    'sun hat', 'sundress', 'sunglasses', 'suspenders', 'sweater', 'sweatpants', 'sweatshirt', 'swimsuit', 
    't-shirt', 'tank top', 'tiara', 'tie', 'tie clip', 'tights', 'toga', 'top', 'top coat', 'top hat', 'train', 
    'trench coat', 'trousers', 'trunks', 'tube top', 'turban', 'turtleneck', 'tutu', 'tuxedo', 'umbrella',
    'veil', 'vest', 'waistcoat', 'wedding gown', 'wetsuit', 
    'windbreaker', 'jogger', 'palazzo', 'cargo', 'dresspants', 'chinos', 
    'crop top', 'romper', 'insulated jacket', 'fleece', 'rain jacket', 
    'running jacket', 'graphic top', 'legging', 'skort',
    'sports bra', 'water shorts', 'goggle', 'glove', 'mitten', 
    'leg gaiter', 'neck gaiter', 'watch', 'bag', 'swim trunk', 
    'pocket watch', 'insoles', "climbing shoes",
]


# Initialize the model and tokenizer
model_name = 'hf-hub:Marqo/marqo-fashionSigLIP'
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
tokenizer = open_clip.get_tokenizer(model_name)

def generate_description(item):
    if "Pants" in item or item in ["Leggings", "Jogger", "Cargo", "Chinos", "Palazzo", "Dresspants", "Sweatpants", "Pant", "Legging", "Skort", "Trouser"]:
        return f"A pair of {item} pants"
    elif item in ["Dress", "Blouse", "T-Shirt", "Tank Top", "Sweater", "Cardigan", "Hoodie", "Coat", "Jacket", "Polo Shirt", "Crop Top", "Romper", "Blazer", "Vest", "Bodysuit", "Maxi Dress", "Graphic Top", "Shirt", "Base Layer Top", "Base Layer Bottom", "Swimsuit", "Rashguard", "Cover Up", "Tuxedo"]:
        return f"A {item}"
    elif item in ["Hat", "Sunglasses", "Glasses", "Sun Hat", "Goggle", "Balaclava"]:
        return f"A {item} worn on the head or face"
    elif item in ["Shoes", "Sandals", "Heels", "Trainers", "Boots", "Slippers", "Sneakers", "Insoles", "Socks"]:
        return f"A pair of {item} worn on the feet"
    elif item in ["Jeans", "Skirt", "Shorts", "Dungarees", "Poncho", "Overalls", "Boxer", "Swim Trunk", "Ring", "Necklace", "Earing", "Pocket Watch"]:
        return f"A {item} piece of clothing"
    elif item in ["Boxing Gloves", "Glove", "Mitten"]:
        return f"An item of {item} worn on the hands"
    else:
        return f"A fashion item called {item}"
items_desc = [generate_description(item) for item in items]
text = tokenizer(items_desc)

# Encode text features (unchanged)
with torch.no_grad(), torch.amp.autocast('cuda'):
    text_features = model.encode_text(text)
    text_features /= text_features.norm(dim=-1, keepdim=True)

# Prediction function
def predict(image, url):
    if url:
        response = requests.get(url)
        image = Image.open(BytesIO(response.content))
    
    processed_image = preprocess_val(image).unsqueeze(0)

    with torch.no_grad(), torch.amp.autocast('cuda'):
        image_features = model.encode_image(processed_image)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
        
        sorted_confidences = sorted(
            {items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), 
            key=lambda x: x[1], 
            reverse=True
        )
        top_10_confidences = dict(sorted_confidences[:10])
        
    return image, top_10_confidences

# Clear function
def clear_fields():
    return None, ""

# Gradio interface
title = "Fashion Item Classifier with Marqo-FashionSigLIP"
description = "Upload an image or provide a URL of a fashion item to classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!"

examples = [
    ["images/dress.jpg", "Dress"],
    ["images/sweatpants.jpg", "Sweatpants"],
    ["images/t-shirt.jpg", "T-Shirt"],
    ["images/hat.jpg", "Hat"],
    ["images/blouse.jpg", "Blouse"],
    ["images/cargo.jpg", "Cargos"],
    ["images/sunglasses.jpg", "Sunglasses"],
    ["images/polo-shirt.jpg", "Polo Shirt"],
]

with gr.Blocks(css="""
    .remove-btn {
        font-size: 24px !important; /* Increase the font size of the cross button */
        line-height: 24px !important;
        width: 30px !important; /* Increase the width */
        height: 30px !important; /* Increase the height */
    }
""") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(f"# {title}")
            gr.Markdown(description)
            gr.Markdown(sidebar_markdown)
            gr.Markdown(" ", elem_id="vertical-line")  # Add an empty Markdown with a custom ID
        with gr.Column(scale=2):
            input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312)
            input_url = gr.Textbox(label="Or provide an image URL")
            with gr.Row():
                predict_button = gr.Button("Classify")
                clear_button = gr.Button("Clear")
            gr.Markdown("Or click on one of the images below to classify it:")
            gr.Examples(examples=examples, inputs=input_image)
            output_label = gr.Label(num_top_classes=6)
            predict_button.click(predict, inputs=[input_image, input_url], outputs=[input_image, output_label])
            clear_button.click(clear_fields, outputs=[input_image, input_url])
        
# Launch the interface
demo.launch()