|
from dataclasses import dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class AutoEvalColumn: |
|
model_type_symbol = ColumnContent("T", "str", True, never_hidden=True) |
|
model = ColumnContent("Model", "markdown", True, never_hidden=True) |
|
average = ColumnContent("Average ⬆️", "number", True) |
|
arc = ColumnContent("ARC", "number", True) |
|
hellaswag = ColumnContent("HellaSwag", "number", True) |
|
mmlu = ColumnContent("MMLU", "number", True) |
|
truthfulqa = ColumnContent("TruthfulQA", "number", True) |
|
winogrande = ColumnContent("Winogrande", "number", True) |
|
gsm8k = ColumnContent("GSM8K", "number", True) |
|
drop = ColumnContent("DROP", "number", True) |
|
model_type = ColumnContent("Type", "str", False) |
|
weight_type = ColumnContent("Weight type", "str", False, True) |
|
precision = ColumnContent("Precision", "str", False) |
|
license = ColumnContent("Hub License", "str", False) |
|
params = ColumnContent("#Params (B)", "number", False) |
|
likes = ColumnContent("Hub ❤️", "number", False) |
|
still_on_hub = ColumnContent("Available on the hub", "bool", False) |
|
revision = ColumnContent("Model sha", "str", False, False) |
|
dummy = ColumnContent( |
|
"model_name_for_query", "str", False, dummy=True |
|
) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
baseline_row = { |
|
AutoEvalColumn.model.name: "<p>Baseline</p>", |
|
AutoEvalColumn.revision.name: "N/A", |
|
AutoEvalColumn.precision.name: None, |
|
AutoEvalColumn.average.name: 31.0, |
|
AutoEvalColumn.arc.name: 25.0, |
|
AutoEvalColumn.hellaswag.name: 25.0, |
|
AutoEvalColumn.mmlu.name: 25.0, |
|
AutoEvalColumn.truthfulqa.name: 25.0, |
|
AutoEvalColumn.winogrande.name: 50.0, |
|
AutoEvalColumn.gsm8k.name: 0.21, |
|
AutoEvalColumn.drop.name: 0.47, |
|
AutoEvalColumn.dummy.name: "baseline", |
|
AutoEvalColumn.model_type.name: "", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
human_baseline_row = { |
|
AutoEvalColumn.model.name: "<p>Human performance</p>", |
|
AutoEvalColumn.revision.name: "N/A", |
|
AutoEvalColumn.precision.name: None, |
|
AutoEvalColumn.average.name: 92.75, |
|
AutoEvalColumn.arc.name: 80.0, |
|
AutoEvalColumn.hellaswag.name: 95.0, |
|
AutoEvalColumn.mmlu.name: 89.8, |
|
AutoEvalColumn.truthfulqa.name: 94.0, |
|
AutoEvalColumn.winogrande.name: 94.0, |
|
AutoEvalColumn.gsm8k.name: 100, |
|
AutoEvalColumn.drop.name: 96.42, |
|
AutoEvalColumn.dummy.name: "human_baseline", |
|
AutoEvalColumn.model_type.name: "", |
|
} |
|
|
|
@dataclass |
|
class ModelTypeDetails: |
|
name: str |
|
symbol: str |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelTypeDetails(name="pretrained", symbol="🟢") |
|
FT = ModelTypeDetails(name="fine-tuned", symbol="🔶") |
|
IFT = ModelTypeDetails(name="instruction-tuned", symbol="⭕") |
|
RL = ModelTypeDetails(name="RL-tuned", symbol="🟦") |
|
Unknown = ModelTypeDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "🔶" in type: |
|
return ModelType.FT |
|
if "pretrained" in type or "🟢" in type: |
|
return ModelType.PT |
|
if "RL-tuned" in type or "🟦" in type: |
|
return ModelType.RL |
|
if "instruction-tuned" in type or "⭕" in type: |
|
return ModelType.IFT |
|
return ModelType.Unknown |
|
|
|
|
|
@dataclass |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
|
|
|
|
class Tasks(Enum): |
|
arc = Task("arc:challenge", "acc_norm", AutoEvalColumn.arc.name) |
|
hellaswag = Task("hellaswag", "acc_norm", AutoEvalColumn.hellaswag.name) |
|
mmlu = Task("hendrycksTest", "acc", AutoEvalColumn.mmlu.name) |
|
truthfulqa = Task("truthfulqa:mc", "mc2", AutoEvalColumn.truthfulqa.name) |
|
winogrande = Task("winogrande", "acc", AutoEvalColumn.winogrande.name) |
|
gsm8k = Task("gsm8k", "acc", AutoEvalColumn.gsm8k.name) |
|
drop = Task("drop", "f1", AutoEvalColumn.drop.name) |
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
"~35": pd.Interval(20, 45, closed="right"), |
|
"~60": pd.Interval(45, 70, closed="right"), |
|
"70+": pd.Interval(70, 10000, closed="right"), |
|
} |
|
|