MeBai's picture
Update app.py
a4b8183 verified
import gradio as gr
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import load_dataset
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline,WhisperProcessor
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import torch
import librosa
# 加载 Whisper 模型和 processor
# model_name = "openai/whisper-large-v3-turbo"
# processor = WhisperProcessor.from_pretrained(model_name)
# model = WhisperForConditionalGeneration.from_pretrained(model_name)
model_name = "openai/whisper-large-v3-turbo"
# models = AutoModelForSpeechSeq2Seq.from_pretrained(
# model_id, low_cpu_mem_usage=True
# )
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name)
# model = pipeline("automatic-speech-recognition", model=models, chunk_length_s=30, device=0)
# 加载数据集 bigcode/the-stack
# ds = load_dataset("CoIR-Retrieval/CodeSearchNet-php-queries-corpus")
def transcribe(audio_path):
# 加载音频文件并转换为信号
# audio, sr = librosa.load(audio_path, sr=16000)
# input_values = processor(audio_path, return_tensors="pt", sampling_rate=16000).["text"]
# # 模型推理
# with torch.no_grad():
# logits = model(input_values).logits
# predicted_ids = torch.argmax(logits, dim=-1)
# transcription = processor.batch_decode(predicted_ids)
# transcription = model(audio_path,batch_size=1000, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
# result = pipe(sample)
# 返回转录结果
# return transcription
#------
audio_cnt, sr = librosa.load(audio_path, sr=16000)
# 将音频数据传递给 processor
input_features = processor(audio_cnt, sampling_rate=16000, return_tensors="pt").input_features
print(input_features)
# 模型推理
with torch.no_grad():
generated_ids = model.generate(input_features)
# 解码得到转录结果
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription
# Gradio 界面
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio( type="filepath"),
outputs="text",
title="Whisper Transcription for Developers",
description="使用 Whisper 和 bigcode 数据集转录开发者相关术语。"
)
# 启动 Gradio 应用
iface.launch()