import gradio as gr | |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
from datasets import load_dataset | |
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline,WhisperProcessor | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import torch | |
import librosa | |
# 加载 Whisper 模型和 processor | |
# model_name = "openai/whisper-large-v3-turbo" | |
# processor = WhisperProcessor.from_pretrained(model_name) | |
# model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
model_name = "openai/whisper-large-v3-turbo" | |
# models = AutoModelForSpeechSeq2Seq.from_pretrained( | |
# model_id, low_cpu_mem_usage=True | |
# ) | |
processor = WhisperProcessor.from_pretrained(model_name) | |
model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
# model = pipeline("automatic-speech-recognition", model=models, chunk_length_s=30, device=0) | |
# 加载数据集 bigcode/the-stack | |
# ds = load_dataset("CoIR-Retrieval/CodeSearchNet-php-queries-corpus") | |
def transcribe(audio_path): | |
# 加载音频文件并转换为信号 | |
# audio, sr = librosa.load(audio_path, sr=16000) | |
# input_values = processor(audio_path, return_tensors="pt", sampling_rate=16000).["text"] | |
# # 模型推理 | |
# with torch.no_grad(): | |
# logits = model(input_values).logits | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# transcription = processor.batch_decode(predicted_ids) | |
# transcription = model(audio_path,batch_size=1000, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] | |
# result = pipe(sample) | |
# 返回转录结果 | |
# return transcription | |
#------ | |
audio_cnt, sr = librosa.load(audio_path, sr=16000) | |
# 将音频数据传递给 processor | |
input_features = processor(audio_cnt, sampling_rate=16000, return_tensors="pt").input_features | |
print(input_features) | |
# 模型推理 | |
with torch.no_grad(): | |
generated_ids = model.generate(input_features) | |
# 解码得到转录结果 | |
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return transcription | |
# Gradio 界面 | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio( type="filepath"), | |
outputs="text", | |
title="Whisper Transcription for Developers", | |
description="使用 Whisper 和 bigcode 数据集转录开发者相关术语。" | |
) | |
# 启动 Gradio 应用 | |
iface.launch() | |