shariar076's picture
Create bn_llm_wrapper
d8188c4 verified
raw
history blame
1.92 kB
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
model_path = os.environ.get("HF_REPO_ID")
access_token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_path, token=access_token)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
# load_in_8bit=use_8_bit,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=getattr(torch, "bfloat16"),
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(model_path, token=access_token,
quantization_config=bnb_config,
torch_dtype=torch.float16,
# attn_implementation="flash_attention_2",
device_map='auto')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
def generate(
question,
context=None,
temperature=0.7,
top_p=0.7,
top_k=40,
num_beams=4,
max_new_tokens=256,):
prompt = f"### CONTEXT:\n{context}\n\n### QUESTION:\n{question}\n\n### ANSWER:"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
)
# with torch.autocast("cuda"):
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
seq = generation_output.sequences[0]
output = tokenizer.decode(seq)
return output