|
import gradio as gr |
|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig |
|
|
|
model_path = os.environ.get("HF_REPO_ID") |
|
access_token = os.environ.get("HF_TOKEN") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, token=access_token) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
|
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=getattr(torch, "bfloat16"), |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, token=access_token, |
|
quantization_config=bnb_config, |
|
torch_dtype=torch.float16, |
|
|
|
device_map='auto') |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
def generate( |
|
question, |
|
context=None, |
|
temperature=0.7, |
|
top_p=0.7, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=256,): |
|
prompt = f"### CONTEXT:\n{context}\n\n### QUESTION:\n{question}\n\n### ANSWER:" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
) |
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
seq = generation_output.sequences[0] |
|
output = tokenizer.decode(seq) |
|
return output |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
context = "" |
|
for chat in history: |
|
context += f"রোগী: {chat[0]}\nথেরাপিস্ট: {chat[1]}\n" |
|
|
|
answer = generate(message, context, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_tokens).split('### ANSWER:')[1] |
|
|
|
if '</s>' in answer: |
|
answer = answer.split('</s>')[0].strip() |
|
|
|
return answer |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |