Menyu commited on
Commit
f646433
·
verified ·
1 Parent(s): 672bb50

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +147 -85
app.py CHANGED
@@ -1,92 +1,154 @@
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
- import spaces
4
- from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
5
- from huggingface_hub import hf_hub_download
6
- from safetensors.torch import load_file
7
- from PIL import Image
8
-
9
- SAFETY_CHECKER = False
10
-
11
- # Constants
12
- base = "stabilityai/stable-diffusion-xl-base-1.0"
13
- repo = "advokat/noobaiXLNAIXL_epsilonPred075"
14
- checkpoints = {
15
- "1-Step" : ["noobaiXLNAIXL_epsilonPred075.safetensors", 1],
16
- }
17
- loaded = None
18
 
19
- # Ensure model and scheduler are initialized in GPU-enabled function
20
- if torch.cuda.is_available():
21
- pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- if SAFETY_CHECKER:
24
- from safety_checker import StableDiffusionSafetyChecker
25
- from transformers import CLIPFeatureExtractor
26
 
27
- safety_checker = StableDiffusionSafetyChecker.from_pretrained(
28
- "CompVis/stable-diffusion-safety-checker"
29
- ).to("cuda")
30
- feature_extractor = CLIPFeatureExtractor.from_pretrained(
31
- "openai/clip-vit-base-patch32"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
34
- def check_nsfw_images(
35
- images: list[Image.Image],
36
- ) -> tuple[list[Image.Image], list[bool]]:
37
- safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
38
- has_nsfw_concepts = safety_checker(
39
- images=[images],
40
- clip_input=safety_checker_input.pixel_values.to("cuda")
41
- )
42
-
43
- return images, has_nsfw_concepts
44
-
45
- # Function
46
- @spaces.GPU(enable_queue=True)
47
- def generate_image(prompt, ckpt):
48
- global loaded
49
- print(prompt, ckpt)
50
-
51
- checkpoint = checkpoints[ckpt][0]
52
- num_inference_steps = checkpoints[ckpt][1]
53
-
54
- if loaded != num_inference_steps:
55
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
56
- pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
57
- loaded = num_inference_steps
58
-
59
- results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
60
-
61
- if SAFETY_CHECKER:
62
- images, has_nsfw_concepts = check_nsfw_images(results.images)
63
- if any(has_nsfw_concepts):
64
- gr.Warning("NSFW content detected.")
65
- return Image.new("RGB", (512, 512))
66
- return images[0]
67
- return results.images[0]
68
-
69
-
70
-
71
- # Gradio Interface
72
-
73
- with gr.Blocks(css="style.css") as demo:
74
- gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
75
- gr.HTML("<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>")
76
- with gr.Group():
77
- with gr.Row():
78
- prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
79
- ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
80
- submit = gr.Button(scale=1, variant='primary')
81
- img = gr.Image(label='SDXL-Lightning Generated Image')
82
-
83
- prompt.submit(fn=generate_image,
84
- inputs=[prompt, ckpt],
85
- outputs=img,
86
- )
87
- submit.click(fn=generate_image,
88
- inputs=[prompt, ckpt],
89
- outputs=img,
90
- )
91
-
92
- demo.queue().launch()
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import random
4
+
5
+ import spaces #[uncomment to use ZeroGPU]
6
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
7
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ device = "cuda"
10
+ model_repo_id = "advokat/noobaiXLNAIXL_epsilonPred075" # Replace to the model you would like to use
11
+
12
+ pipe = StableDiffusionXLPipeline.from_pretrained(model_repo_id, torch_dtype=torch.float16)
13
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
14
+ pipe.scheduler.register_to_config(
15
+ prediction_type="v_prediction",
16
+ rescale_betas_zero_snr=True,
17
+ )
18
+ pipe = pipe.to(device)
19
+
20
+ MAX_SEED = np.iinfo(np.int32).max
21
+ MAX_IMAGE_SIZE = 1024
22
+
23
+
24
+ @spaces.GPU #[uncomment to use ZeroGPU]
25
+ def infer(
26
+ prompt,
27
+ negative_prompt,
28
+ seed,
29
+ randomize_seed,
30
+ width,
31
+ height,
32
+ guidance_scale,
33
+ num_inference_steps,
34
+ progress=gr.Progress(track_tqdm=True),
35
+ ):
36
+ if randomize_seed:
37
+ seed = random.randint(0, MAX_SEED)
38
+
39
+ generator = torch.Generator().manual_seed(seed)
40
+
41
+ image = pipe(
42
+ prompt=prompt,
43
+ negative_prompt=negative_prompt,
44
+ guidance_scale=guidance_scale,
45
+ num_inference_steps=num_inference_steps,
46
+ width=width,
47
+ height=height,
48
+ generator=generator,
49
+ ).images[0]
50
+
51
+ return image, seed
52
+
53
+
54
+ examples = [
55
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
+ "An astronaut riding a green horse",
57
+ "A delicious ceviche cheesecake slice",
58
+ ]
59
+
60
+ css = """
61
+ #col-container {
62
+ margin: 0 auto;
63
+ max-width: 640px;
64
+ }
65
+ """
66
 
67
+ with gr.Blocks(css=css) as demo:
68
+ with gr.Column(elem_id="col-container"):
69
+ gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
+ with gr.Row():
72
+ prompt = gr.Text(
73
+ label="Prompt",
74
+ show_label=False,
75
+ max_lines=1,
76
+ placeholder="Enter your prompt",
77
+ container=False,
78
+ )
79
+
80
+ run_button = gr.Button("Run", scale=0, variant="primary")
81
+
82
+ result = gr.Image(label="Result", show_label=False)
83
+
84
+ with gr.Accordion("Advanced Settings", open=False):
85
+ negative_prompt = gr.Text(
86
+ label="Negative prompt",
87
+ max_lines=1,
88
+ placeholder="Enter a negative prompt",
89
+ visible=False,
90
+ )
91
+
92
+ seed = gr.Slider(
93
+ label="Seed",
94
+ minimum=0,
95
+ maximum=MAX_SEED,
96
+ step=1,
97
+ value=0,
98
+ )
99
+
100
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
+ with gr.Row():
103
+ width = gr.Slider(
104
+ label="Width",
105
+ minimum=256,
106
+ maximum=MAX_IMAGE_SIZE,
107
+ step=32,
108
+ value=512, # Replace with defaults that work for your model
109
+ )
110
+
111
+ height = gr.Slider(
112
+ label="Height",
113
+ minimum=256,
114
+ maximum=MAX_IMAGE_SIZE,
115
+ step=32,
116
+ value=768, # Replace with defaults that work for your model
117
+ )
118
+
119
+ with gr.Row():
120
+ guidance_scale = gr.Slider(
121
+ label="Guidance scale",
122
+ minimum=0.0,
123
+ maximum=10.0,
124
+ step=0.1,
125
+ value=1, # Replace with defaults that work for your model
126
+ )
127
+
128
+ num_inference_steps = gr.Slider(
129
+ label="Number of inference steps",
130
+ minimum=1,
131
+ maximum=50,
132
+ step=1,
133
+ value=28, # Replace with defaults that work for your model
134
+ )
135
+
136
+ gr.Examples(examples=examples, inputs=[prompt])
137
+ gr.on(
138
+ triggers=[run_button.click, prompt.submit],
139
+ fn=infer,
140
+ inputs=[
141
+ prompt,
142
+ negative_prompt,
143
+ seed,
144
+ randomize_seed,
145
+ width,
146
+ height,
147
+ guidance_scale,
148
+ num_inference_steps,
149
+ ],
150
+ outputs=[result, seed],
151
  )
152
 
153
+ if __name__ == "__main__":
154
+ demo.launch()