import os import re import pickle import numpy as np import pandas as pd import nltk import gradio as gr from sklearn.metrics.pairwise import cosine_similarity class HadithClassificationApp: def __init__(self): # Download NLTK resources if needed nltk.download('punkt') # Define file paths base_path = os.path.dirname(__file__) dataset_path = os.path.join(base_path, "Preprocessed_LK_Hadith_dataset.csv") vectorizer_path = os.path.join(base_path, "tfidf_vectorizer.pkl") similarity_model_path = os.path.join(base_path, "cosine_similarity_model.pkl") # Load the dataset and labels self.dataset = pd.read_csv(dataset_path) self.labels = self.dataset['Arabic_Grade'] # Load the models with open(vectorizer_path, "rb") as f: self.vectorizer = pickle.load(f) with open(similarity_model_path, "rb") as f: self.X = pickle.load(f) @staticmethod def remove_tashkeel(text): tashkeel_pattern = re.compile(r'[\u0617-\u061A\u064B-\u0652]') return re.sub(tashkeel_pattern, '', text) def preprocess_arabic_text(self, text): text = self.remove_tashkeel(text) tokens = nltk.word_tokenize(text) cleaned_tokens = [token for token in tokens if token.isalnum()] lowercase_tokens = [token.lower() for token in cleaned_tokens] return " ".join(lowercase_tokens) def predict_label(self, input_text, threshold=0.5): input_text = self.preprocess_arabic_text(input_text) input_vector = self.vectorizer.transform([input_text]) similarities = cosine_similarity(input_vector, self.X).flatten() max_index = np.argmax(similarities) max_similarity = similarities[max_index] if max_similarity >= threshold: return self.labels.iloc[max_index] else: return "No similar text found in dataset" def classify_hadith(self, input_text): return self.predict_label(input_text) if __name__ == "__main__": # Initialize the app hadith_classification_app = HadithClassificationApp() # Set up the Gradio interface iface = gr.Interface( fn=hadith_classification_app.classify_hadith, inputs="text", outputs="text", title="Hadith Classification App", description="Classify Hadith text based on pre-trained model." ) # Launch the Gradio interface iface.launch()