Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from skimage.transform import resize | |
from tensorflow.keras.models import Sequential, load_model | |
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dropout, Dense, Flatten, BatchNormalization | |
class SkinCancer : | |
def __init__ (self): | |
self.model = self.load_model() | |
def build_model (self) : | |
model = Sequential() | |
model.add(Conv2D(filters = 128, kernel_size = (4,4), input_shape = (32, 32, 3), activation = 'relu')) | |
model.add(MaxPool2D(pool_size = (4,4))) | |
model.add(Conv2D(filters = 64, kernel_size = (2,2), activation = 'relu')) | |
model.add(MaxPool2D(pool_size = (2,2))) | |
model.add(BatchNormalization()) | |
#model.add(GlobalAveragePooling2D()) | |
model.add(Flatten()) | |
model.add(Dense(128, activation = 'relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(1, activation = 'sigmoid')) # sigmoid is better for binary classification | |
#model.summary() | |
return model | |
def load_model(self): | |
model = self.build_model() | |
model = load_model("Normal_skin_cancer_model.h5") | |
return model | |
def preprocess_image(self,img): | |
img = resize(img, (32,32)) | |
img = img.reshape(1,32,32,3) | |
return img | |
def predict(self,img): | |
real_labels = ["benign", "malignant"] | |
img = self.preprocess_image(img) | |
res = np.argmax(self.model.predict(img)) | |
return real_labels[res] | |
def Test(img): | |
model_new = SkinCancer() | |
res = model_new.predict(img) | |
return res | |
#interface | |
interface = gr.Interface(fn = Test, | |
inputs = gr.inputs.Image(shape=(200,200)), | |
outputs=["text"], | |
title="Skin Cancer detection") | |
interface.launch() |