File size: 15,365 Bytes
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
from whisperx.alignment import (
    DEFAULT_ALIGN_MODELS_TORCH as DAMT,
    DEFAULT_ALIGN_MODELS_HF as DAMHF,
)
from whisperx.utils import TO_LANGUAGE_CODE
import whisperx
import torch
import gc
import os
import soundfile as sf
from IPython.utils import capture # noqa
from .language_configuration import EXTRA_ALIGN, INVERTED_LANGUAGES
from .logging_setup import logger
from .postprocessor import sanitize_file_name
from .utils import remove_directory_contents, run_command

# ZERO GPU CONFIG
import spaces
import copy
import random
import time

def random_sleep():
    if os.environ.get("ZERO_GPU") == "TRUE":
        print("Random sleep")
        sleep_time = round(random.uniform(7.2, 9.9), 1)
        time.sleep(sleep_time)


@spaces.GPU(duration=120)
def load_and_transcribe_audio(asr_model, audio, compute_type, language, asr_options, batch_size, segment_duration_limit):
    # Load model
    model = whisperx.load_model(
        asr_model,
        os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
        compute_type=compute_type,
        language=language,
        asr_options=asr_options,
    )

    # Transcribe audio
    result = model.transcribe(
        audio,
        batch_size=batch_size,
        chunk_size=segment_duration_limit,
        print_progress=True,
    )

    del model
    gc.collect()
    torch.cuda.empty_cache()  # noqa
    
    return result

def load_align_and_align_segments(result, audio, DAMHF):

    # Load alignment model
    model_a, metadata = whisperx.load_align_model(
        language_code=result["language"],
        device=os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
        model_name=None
        if result["language"] in DAMHF.keys()
        else EXTRA_ALIGN[result["language"]],
    )

    # Align segments
    alignment_result = whisperx.align(
        result["segments"],
        model_a,
        metadata,
        audio,
        os.environ.get("SONITR_DEVICE") if os.environ.get("ZERO_GPU") != "TRUE" else "cuda",
        return_char_alignments=True,
        print_progress=False,
    )

    # Clean up
    del model_a
    gc.collect()
    torch.cuda.empty_cache()  # noqa

    return alignment_result

@spaces.GPU(duration=120)
def diarize_audio(diarize_model, audio_wav, min_speakers, max_speakers):

    if os.environ.get("ZERO_GPU") == "TRUE":
        diarize_model.model.to(torch.device("cuda"))
    diarize_segments = diarize_model(
        audio_wav, 
        min_speakers=min_speakers, 
        max_speakers=max_speakers
    )
    return diarize_segments

# ZERO GPU CONFIG

ASR_MODEL_OPTIONS = [
    "tiny",
    "base",
    "small",
    "medium",
    "large",
    "large-v1",
    "large-v2",
    "large-v3",
    "distil-large-v2",
    "Systran/faster-distil-whisper-large-v3",
    "tiny.en",
    "base.en",
    "small.en",
    "medium.en",
    "distil-small.en",
    "distil-medium.en",
    "OpenAI_API_Whisper",
]

COMPUTE_TYPE_GPU = [
    "default",
    "auto",
    "int8",
    "int8_float32",
    "int8_float16",
    "int8_bfloat16",
    "float16",
    "bfloat16",
    "float32"
]

COMPUTE_TYPE_CPU = [
    "default",
    "auto",
    "int8",
    "int8_float32",
    "int16",
    "float32",
]

WHISPER_MODELS_PATH = './WHISPER_MODELS'


def openai_api_whisper(
    input_audio_file,
    source_lang=None,
    chunk_duration=1800
):

    info = sf.info(input_audio_file)
    duration = info.duration

    output_directory = "./whisper_api_audio_parts"
    os.makedirs(output_directory, exist_ok=True)
    remove_directory_contents(output_directory)

    if duration > chunk_duration:
        # Split the audio file into smaller chunks with 30-minute duration
        cm = f'ffmpeg -i "{input_audio_file}" -f segment -segment_time {chunk_duration} -c:a libvorbis "{output_directory}/output%03d.ogg"'
        run_command(cm)
        # Get list of generated chunk files
        chunk_files = sorted(
            [f"{output_directory}/{f}" for f in os.listdir(output_directory) if f.endswith('.ogg')]
        )
    else:
        one_file = f"{output_directory}/output000.ogg"
        cm = f'ffmpeg -i "{input_audio_file}" -c:a libvorbis {one_file}'
        run_command(cm)
        chunk_files = [one_file]

    # Transcript
    segments = []
    language = source_lang if source_lang else None
    for i, chunk in enumerate(chunk_files):
        from openai import OpenAI
        client = OpenAI()

        audio_file = open(chunk, "rb")
        transcription = client.audio.transcriptions.create(
          model="whisper-1",
          file=audio_file,
          language=language,
          response_format="verbose_json",
          timestamp_granularities=["segment"],
        )

        try:
            transcript_dict = transcription.model_dump()
        except: # noqa
            transcript_dict = transcription.to_dict()

        if language is None:
            logger.info(f'Language detected: {transcript_dict["language"]}')
            language = TO_LANGUAGE_CODE[transcript_dict["language"]]

        chunk_time = chunk_duration * (i)

        for seg in transcript_dict["segments"]:

            if "start" in seg.keys():
                segments.append(
                    {
                        "text": seg["text"],
                        "start": seg["start"] + chunk_time,
                        "end": seg["end"] + chunk_time,
                    }
                )

    audio = whisperx.load_audio(input_audio_file)
    result = {"segments": segments, "language": language}

    return audio, result


def find_whisper_models():
    path = WHISPER_MODELS_PATH
    folders = []

    if os.path.exists(path):
        for folder in os.listdir(path):
            folder_path = os.path.join(path, folder)
            if (
                os.path.isdir(folder_path)
                and 'model.bin' in os.listdir(folder_path)
            ):
                folders.append(folder)
    return folders

def transcribe_speech(
    audio_wav,
    asr_model,
    compute_type,
    batch_size,
    SOURCE_LANGUAGE,
    literalize_numbers=True,
    segment_duration_limit=15,
):
    """
    Transcribe speech using a whisper model.

    Parameters:
    - audio_wav (str): Path to the audio file in WAV format.
    - asr_model (str): The whisper model to be loaded.
    - compute_type (str): Type of compute to be used (e.g., 'int8', 'float16').
    - batch_size (int): Batch size for transcription.
    - SOURCE_LANGUAGE (str): Source language for transcription.

    Returns:
    - Tuple containing:
        - audio: Loaded audio file.
        - result: Transcription result as a dictionary.
    """

    if asr_model == "OpenAI_API_Whisper":
        if literalize_numbers:
            logger.info(
                "OpenAI's API Whisper does not support "
                "the literalization of numbers."
            )
        return openai_api_whisper(audio_wav, SOURCE_LANGUAGE)

    # https://github.com/openai/whisper/discussions/277
    prompt = "以下是普通话的句子。" if SOURCE_LANGUAGE == "zh" else None
    SOURCE_LANGUAGE = (
        SOURCE_LANGUAGE if SOURCE_LANGUAGE != "zh-TW" else "zh"
    )
    asr_options = {
        "initial_prompt": prompt,
        "suppress_numerals": literalize_numbers
    }

    if asr_model not in ASR_MODEL_OPTIONS:

        base_dir = WHISPER_MODELS_PATH
        if not os.path.exists(base_dir):
            os.makedirs(base_dir)
        model_dir = os.path.join(base_dir, sanitize_file_name(asr_model))

        if not os.path.exists(model_dir):
            from ctranslate2.converters import TransformersConverter

            quantization = "float32"
            # Download new model
            try:
                converter = TransformersConverter(
                    asr_model,
                    low_cpu_mem_usage=True,
                    copy_files=[
                        "tokenizer_config.json", "preprocessor_config.json"
                    ]
                )
                converter.convert(
                    model_dir,
                    quantization=quantization,
                    force=False
                )
            except Exception as error:
                if "File tokenizer_config.json does not exist" in str(error):
                    converter._copy_files = [
                        "tokenizer.json", "preprocessor_config.json"
                    ]
                    converter.convert(
                        model_dir,
                        quantization=quantization,
                        force=True
                    )
                else:
                    raise error

        asr_model = model_dir
        logger.info(f"ASR Model: {str(model_dir)}")

    audio = whisperx.load_audio(audio_wav)
    
    result = load_and_transcribe_audio(
        asr_model, audio, compute_type, SOURCE_LANGUAGE, asr_options, batch_size, segment_duration_limit
    )

    if result["language"] == "zh" and not prompt:
        result["language"] = "zh-TW"
        logger.info("Chinese - Traditional (zh-TW)")


    return audio, result


def align_speech(audio, result):
    """
    Aligns speech segments based on the provided audio and result metadata.

    Parameters:
    - audio (array): The audio data in a suitable format for alignment.
    - result (dict): Metadata containing information about the segments
         and language.

    Returns:
    - result (dict): Updated metadata after aligning the segments with
        the audio. This includes character-level alignments if
        'return_char_alignments' is set to True.

    Notes:
    - This function uses language-specific models to align speech segments.
    - It performs language compatibility checks and selects the
        appropriate alignment model.
    - Cleans up memory by releasing resources after alignment.
    """
    DAMHF.update(DAMT)  # lang align
    if (
        not result["language"] in DAMHF.keys()
        and not result["language"] in EXTRA_ALIGN.keys()
    ):
        logger.warning(
            "Automatic detection: Source language not compatible with align"
        )
        raise ValueError(
            f"Detected language {result['language']}  incompatible, "
            "you can select the source language to avoid this error."
        )
    if (
        result["language"] in EXTRA_ALIGN.keys()
        and EXTRA_ALIGN[result["language"]] == ""
    ):
        lang_name = (
            INVERTED_LANGUAGES[result["language"]]
            if result["language"] in INVERTED_LANGUAGES.keys()
            else result["language"]
        )
        logger.warning(
            "No compatible wav2vec2 model found "
            f"for the language '{lang_name}', skipping alignment."
        )
        return result

    random_sleep()
    result = load_align_and_align_segments(result, audio, DAMHF)

    return result


diarization_models = {
    "pyannote_3.1": "pyannote/speaker-diarization-3.1",
    "pyannote_2.1": "pyannote/speaker-diarization@2.1",
    "disable": "",
}


def reencode_speakers(result):

    if result["segments"][0]["speaker"] == "SPEAKER_00":
        return result

    speaker_mapping = {}
    counter = 0

    logger.debug("Reencode speakers")

    for segment in result["segments"]:
        old_speaker = segment["speaker"]
        if old_speaker not in speaker_mapping:
            speaker_mapping[old_speaker] = f"SPEAKER_{counter:02d}"
            counter += 1
        segment["speaker"] = speaker_mapping[old_speaker]

    return result


def diarize_speech(
    audio_wav,
    result,
    min_speakers,
    max_speakers,
    YOUR_HF_TOKEN,
    model_name="pyannote/speaker-diarization@2.1",
):
    """
    Performs speaker diarization on speech segments.

    Parameters:
    - audio_wav (array): Audio data in WAV format to perform speaker
        diarization.
    - result (dict): Metadata containing information about speech segments
        and alignments.
    - min_speakers (int): Minimum number of speakers expected in the audio.
    - max_speakers (int): Maximum number of speakers expected in the audio.
    - YOUR_HF_TOKEN (str): Your Hugging Face API token for model
        authentication.
    - model_name (str): Name of the speaker diarization model to be used
        (default: "pyannote/speaker-diarization@2.1").

    Returns:
    - result_diarize (dict): Updated metadata after assigning speaker
        labels to segments.

    Notes:
    - This function utilizes a speaker diarization model to label speaker
        segments in the audio.
    - It assigns speakers to word-level segments based on diarization results.
    - Cleans up memory by releasing resources after diarization.
    - If only one speaker is specified, each segment is automatically assigned
        as the first speaker, eliminating the need for diarization inference.
    """

    if max(min_speakers, max_speakers) > 1 and model_name:
        try:

            diarize_model = whisperx.DiarizationPipeline(
                model_name=model_name,
                use_auth_token=YOUR_HF_TOKEN,
                device=os.environ.get("SONITR_DEVICE"),
            )

        except Exception as error:
            error_str = str(error)
            gc.collect()
            torch.cuda.empty_cache()  # noqa
            if "'NoneType' object has no attribute 'to'" in error_str:
                if model_name == diarization_models["pyannote_2.1"]:
                    raise ValueError(
                        "Accept the license agreement for using Pyannote 2.1."
                        " You need to have an account on Hugging Face and "
                        "accept the license to use the models: "
                        "https://huggingface.co/pyannote/speaker-diarization "
                        "and https://huggingface.co/pyannote/segmentation "
                        "Get your KEY TOKEN here: "
                        "https://hf.co/settings/tokens "
                    )
                elif model_name == diarization_models["pyannote_3.1"]:
                    raise ValueError(
                        "New Licence Pyannote 3.1: You need to have an account"
                        " on Hugging Face and accept the license to use the "
                        "models: https://huggingface.co/pyannote/speaker-diarization-3.1 " # noqa
                        "and https://huggingface.co/pyannote/segmentation-3.0 "
                    )
            else:
                raise error

        random_sleep()
        diarize_segments = diarize_audio(diarize_model, audio_wav, min_speakers, max_speakers)

        result_diarize = whisperx.assign_word_speakers(
            diarize_segments, result
        )

        for segment in result_diarize["segments"]:
            if "speaker" not in segment:
                segment["speaker"] = "SPEAKER_00"
                logger.warning(
                    f"No speaker detected in {segment['start']}. First TTS "
                    f"will be used for the segment text: {segment['text']} "
                )

        del diarize_model
        gc.collect()
        torch.cuda.empty_cache()  # noqa
    else:
        result_diarize = result
        result_diarize["segments"] = [
            {**item, "speaker": "SPEAKER_00"}
            for item in result_diarize["segments"]
        ]
    return reencode_speakers(result_diarize)