File size: 39,388 Bytes
1fb65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
import os
import sys
import re
import numpy as np
import cv2
import json
import yaml
import vis_utils as v_uts
import struct
from cv_base import (
    Faces, Aux, Obj, DEFAULT_MATERIAL
)

hasTorch = True
try:
    import torch
except:
    hasTorch = False

import functools
import pandas as pd
from tqdm import tqdm
from PIL import Image

try:
    from plyfile import PlyData
except:
    "no ply"

import pdb
b=pdb.set_trace

def default(x, val):
    return val if x is None else x


class IOShop:
    def __init__(self, name, **kwargs):
        ioFuncs = {'depth': DepthIO,
                   'image': ImageIO,
                   'flow': FlowIO,
                   'segment': SegmentIO,
                   'prob': ProbIO,
                   'video': VideoIO}

        self.io = ioFuncs[name](**kwargs)

    def load(self, file_name, **kwargs):
        return self.io.load(file_name, **kwargs)

    def dump(self, file_name, file, **kwargs):
        self.io.dump(file_name, file, **kwargs)


class BaseIO:
    def __init__(self, appex='jpg'):
        self.type = 'image'
        self.appex = appex

    def load(self, file_name):
        file_name = '%s.%s' % (file_name, self.appex)
        image = cv2.imread(file_name, cv2.IMREAD_UNCHANGED)
        assert not (image is None), '%s not exists' % file_name

        return image

    def dump(self, file_name, file):
        v_uts.mkdir_if_need(os.path.dirname(file_name))
        file_name = '%s.%s' % (file_name, self.appex)
        cv2.imwrite(file_name, file)


class ImageIO(BaseIO):
    def __init__(self, appex='jpg'):
        super(ImageIO, self).__init__(appex=appex)
        self.type = 'image'

    def load(self, file_name):
        if file_name.endswith('heic') or file_name.endswith('HEIC'):
            byte = read2byte(file_name)
            image = decodeImage(byte)
        else:
            image = super(ImageIO, self).load(file_name)

        return image

    @staticmethod
    def imwrite(file_name, data, order='rgb'):
        cv2.imwrite(file_name, data[:, :, ::-1])


class SegmentIO(BaseIO):
    def __init__(self):
        super(SegmentIO, self).__init__(appex='png')
        self.type = 'segment'


class ProbIO(BaseIO):
    def __init__(self):
        super(ProbIO, self).__init__()
        self.type = 'prob'
        self.max_class = 4

    def load(self, file_name, channels=None):
        image = cv2.imread(file_name, cv2.IMREAD_UNCHANGED)
        channels = default(channels, self.max_class)
        output = np.zeros(image.shape[:2])
        # for i in range(channels):
            

    def dump(self, file_name, file):
        """ 
            height, width, channel
        """
        output = np.zeros((height, width), dtype=np.uint16)
        h, w, c = file.shape
        for i in range(c):
            output = output + np.uint16(file[:, :, i] * 255) + i * 256

        cv2.imwrite(file_name, output.astype('uint16'))

        

class MeshIO(BaseIO):
    def __init__(self):
        super().__init__(appex='obj')
        self.type = 'mesh'

    def dump_obj(self, filename, obj):
        export_obj(filename, obj)

    def load_obj(self, filename):
        return load_obj(filename)


def normalize_normal(mat):
    mat = (mat / 255.0 * 2.0 - 1.0).astype('float32')
    l1 = np.linalg.norm(mat, axis=2)
    for j in range(3):
        mat[:,:,j] /= (l1 + 1e-9)
    return mat


class NormalIO(BaseIO):
    def __init__(self, xyz='rgb'):
        """
        rgb: means the normal saved in the order of x: r ...
        """
        self._xyz = xyz 

    def read(self, filename):
        normal = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
        if self._xyz == 'rgb':
            normal = normal[:, :, ::-1]

        normal = normalize_normal(normal)
        return normal


class DepthIO(BaseIO):
    def __init__(self, bit=8):
        super(DepthIO, self).__init__(appex='pfm')
        assert bit in [8, 16]
        scale = {8: 1, 16: 2}
        self.bits = scale[bit]
        self.dump_vis = True

    def load(self, path):
        """Read pfm file.
        Args:
            path (str): path to file

        Returns:
            tuple: (data, scale)
        """

        path = '%s.%s' % (path, self.appex)
        with open(path, "rb") as file:

            color = None
            width = None
            height = None
            scale = None
            endian = None

            header = file.readline().rstrip()
            if header.decode("ascii") == "PF":
                color = True
            elif header.decode("ascii") == "Pf":
                color = False
            else:
                raise Exception("Not a PFM file: " + path)

            dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
            if dim_match:
                width, height = list(map(int, dim_match.groups()))
            else:
                raise Exception("Malformed PFM header.")

            scale = float(file.readline().decode("ascii").rstrip())
            if scale < 0:
                # little-endian
                endian = "<"
                scale = -scale
            else:
                # big-endian
                endian = ">"

            data = np.fromfile(file, endian + "f")
            shape = (height, width, 3) if color else (height, width)

            data = np.reshape(data, shape)
            data = np.flipud(data)

            return data, scale

    def dump(self, path, image, scale=1):
        """Write pfm file.

        Args:
            path (str): pathto file
            image (array): data
            scale (int, optional): Scale. Defaults to 1.
        """

        v_uts.mkdir_if_need(os.path.dirname(path))
        path = path + '.pfm'

        with open(path, "wb") as file:
            color = None

            if image.dtype.name != "float32":
                raise Exception("Image dtype must be float32.")

            image = np.flipud(image)

            if len(image.shape) == 3 and image.shape[2] == 3:  # color image
                color = True
            elif (
                len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
            ):  # greyscale
                color = False
            else:
                raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")

            file.write("PF\n" if color else "Pf\n".encode())
            file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))

            endian = image.dtype.byteorder

            if endian == "<" or endian == "=" and sys.byteorder == "little":
                scale = -scale

            file.write("%f\n".encode() % scale)
            image.tofile(file)

        if self.dump_vis:
            self.dump_visualize(path[:-4], image, self.bits)

    @staticmethod
    def to8UC3(depth, scale=1000):
        """
        Convert depth image to 8UC3 format.
        """
        h, w = depth.shape
        max_depth = (256.0 ** 3 - 1) / scale

        # Clip depth values exceeding the maximum depth
        depth = np.clip(depth, 0, max_depth)

        # Scale the depth values
        value = depth * scale

        # Split the depth values into three channels
        ch = np.zeros((h, w, 3), dtype=np.uint8)
        ch[:, :, 0] = np.uint8(value / (256 ** 2))
        ch[:, :, 1] = np.uint8((value % (256 ** 2)) / 256)
        ch[:, :, 2] = np.uint8(value % 256)

        return ch


    @staticmethod
    def read8UC3(depth, scale=1000):
        """
        Convert 8UC3 image to scaled depth representation.
        """
        if isinstance(depth, str):
            depth = cv2.imread(depth, cv2.IMREAD_UNCHANGED)

        # Merge the three channels into a single depth value
        depth_uint16 = depth[:, :, 0] * (256 ** 2) + \
                    depth[:, :, 1] * 256 + depth[:, :, 2]
        # Convert depth to the scaled representation
        depth = depth_uint16.astype(np.float32) / scale

        return depth

    @staticmethod
    def dump_visualize(path, depth, bits=1):

        depth_min = depth.min()
        depth_max = depth.max()

        max_val = (2**(8*bits))-1

        if depth_max - depth_min > np.finfo("float").eps:
            out = max_val * (depth - depth_min) / (depth_max - depth_min)
        else:
            out = 0

        if bits == 1:
            cv2.imwrite(path + ".png", out.astype("uint8"))
        elif bits == 2:
            cv2.imwrite(path + ".png", out.astype("uint16"))

        return

    @staticmethod
    def load_png(path):
        depth = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        return depth

    @staticmethod
    def dump_png(path, depth, bits=2, max_depth=20.0):
        assert (path.endswith(".png"))
        max_val = (2**(8*bits))-1
        depth = depth / max_depth * max_val
        cv2.imwrite(path, depth.astype("uint16"))

    @staticmethod
    def read_depth(filename, scale=6000, sz=None, is_disparity=False):
        if not hasTorch:
            return None

        depth = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
        depth = np.float32(depth) / scale
        if sz:
            h, w = sz
            depth = cv2.resize(depth, (w, h), 
                        interpolation=cv2.INTER_NEAREST)
        
        depth = torch.from_numpy(depth)

        if is_disparity:   # convert to depth
            depth = 1.0 / torch.clamp(depth, min=1e-10)

        return depth

def write_depth(path, depth, grayscale, bits=1):
    """Write depth map to png file.

    Args:
        path (str): filepath without extension
        depth (array): depth
        grayscale (bool): use a grayscale colormap?
    """
    if not grayscale:
        bits = 1

    if not np.isfinite(depth).all():
        depth=np.nan_to_num(depth, nan=0.0, posinf=0.0, neginf=0.0)
        print("WARNING: Non-finite depth values present")

    depth_min = depth.min()
    depth_max = depth.max()

    max_val = (2**(8*bits))-1

    if depth_max - depth_min > np.finfo("float").eps:
        out = max_val * (depth - depth_min) / (depth_max - depth_min)
    else:
        out = np.zeros(depth.shape, dtype=depth.dtype)

    if not grayscale:
        out = cv2.applyColorMap(np.uint8(out), cv2.COLORMAP_INFERNO)

    if bits == 1:
        cv2.imwrite(path + ".png", out.astype("uint8"))
    elif bits == 2:
        cv2.imwrite(path + ".png", out.astype("uint16"))

    return


class NormalIO(BaseIO):
    def __init__(self):
        super(NormalIO, self).__init__(appex='npy')
        self.dump_vis = False

    @staticmethod
    def read_normal(filename, sz=None, to_torch=False):
        if not hasTorch:
            return None
        if not os.path.exists(filename):
            h, w = sz
            return torch.ones((h, w, 3)) * 0.3

        image = cv2.imread(filename)[:, :, ::-1]
        image = np.float32(image)
        image = (image / 127.5 - 1)
        if sz:
            h, w = sz
            image = cv2.resize(image, (w, h), 
                        interpolation=cv2.INTER_NEAREST)

        return torch.from_numpy(image)

    def to8UC3(self, normal):
        return np.uint8((normal + 1) * 127.5)


class FlowIO(BaseIO):
    def __init__(self):
        super(FlowIO, self).__init__(appex='npy')
        self.dump_vis = False

    def normalize(self, flow, shape=None):
        if shape is None:
            shape = flow.shape[:2]

        flow[:, :, 0] /= shape[1]
        flow[:, :, 1] /= shape[0]
        return flow

    def denormalize(self, flow, shape=None):
        if shape is None:
            shape = flow.shape[:2]

        flow[:, :, 0] *= shape[1]
        flow[:, :, 1] *= shape[0]
        return flow

    def visualization(self, flow):
        pass

    def load(self, path, shape=None):
        path = path + '.npy'
        flow = np.load(path)
        flow = self.denormalize(flow, shape)
        assert flow is not None
        return flow

    def dump(self, path, flow):
        v_uts.mkdir_if_need(os.path.dirname(path))
        path = path + '.npy'
        flow = self.normalize(flow)
        np.save(path, flow)

        if self.dump_vis:
            self.dump_visualize(path[:-4], flow)

    def dump_visualize(self, path, flow):
        _, flow_c = v_uts.flow2color(flow)
        cv2.imwrite(path + '.png', flow_c)


class VideoIO(BaseIO):
    def __init__(self, longside_len=None):
        super(VideoIO, self).__init__()
        self.longside_len = longside_len

    def get_fps(self, path):
        vidcap = cv2.VideoCapture(path)
        return vidcap.get(cv2.CAP_PROP_FPS)

    def load_first_frame(self, path):
        import skvideo.io as vio
        video = vio.vreader(path)
        frame = next(video)
        if self.longside_len is not None:
            frame = v_uts.resize2maxsize(frame, self.longside_len)

        return frame

    def load(self, path, sample_rate=1, max_len=1e10, 
             load_to_dir=False, 
             dir_name=None, 
             pre_len=5, 
             save_transform=None):
        import skvideo.io as vio

        def default_transform(x):
            if x.ndim == 2:
                return x
            if x.ndim == 3 and x.shape[2] == 3:
                return x[:, :, ::-1]
            return x

        frames = []
        reader = vio.vreader(path)

        if load_to_dir:
            v_uts.mkdir(dir_name)

        if save_transform is None:
            save_transform = lambda x : x

        for count, frame in enumerate(reader):
            if count == max_len:
                break
            if count % sample_rate == 0:
                if self.longside_len is not None:
                    frame = v_uts.resize2maxsize(
                        frame, self.longside_len)
                if load_to_dir:
                    img_file = f"{dir_name}/{count:05}.png"
                    frame = save_transform(frame)
                    cv2.imwrite(img_file, frame)
                else:
                    frames.append(frame)

        if not load_to_dir:
            return frames


    def load_till_end(self, path, sample_rate=1):
        import skvideo.io as vio
        frames = []
        reader = vio.vreader(path)
        count = 0
        while True:
            try:
                frame = next(reader)
            except:
                break

            if count % sample_rate == 0:
                if self.longside_len is not None:
                    frame = v_uts.resize2maxsize(
                        frame, self.longside_len)
                frames.append(frame)
            count += 1

        return frames

    def load_w_cv(self, path, out_dir, sample_rate = 1, ext="jpg"):
        v_uts.video_to_frame(path, 
                             out_dir, 
                             max_len=self.longside_len, 
                             sample_rate=sample_rate, 
                             ext=ext)

    def dump_to_images(self, frames, image_path):
        v_uts.mkdir_if_need(image_path)
        for count, frame in tqdm(enumerate(frames)):
            image_file = '%s/%04d.jpg' % (image_path, count)
            cv2.imwrite(image_file, frame[:, :, ::-1])

    def dump(self, path, frames, fps=30, lossless=False):
        from moviepy.editor import ImageSequenceClip, VideoFileClip
        if isinstance(frames[0], str):
            frame_np = []
            for frame in tqdm(frames):
                cur_frame = cv2.imread(frame, cv2.IMREAD_UNCHANGED)[:, :, ::-1]
                frame_np.append(cur_frame)
            frames = frame_np

        clip = ImageSequenceClip(frames, fps)
        if lossless:
            assert path.endswith('avi')
            clip.write_videofile(path, codec='png')
        else:
            clip.write_videofile(path, fps=fps)

    def dump_skv(self, path, frames, fps=30):
        if frames[0].ndim == 2:
            frames = [cv2.cvtColor(frame,cv2.COLOR_GRAY2RGB) for frame in frames]
        else:
            frames = [frame[:, :, ::-1] for frame in frames]
        v_uts.frame_to_video_simple(frames, fps, video_name=path)
        # import skvideo.io as vio
        # fps = str(int(fps))
        # vid_out = vio.FFmpegWriter(path,
        #                            inputdict={'-r': fps},
        #                            outputdict={
        #                                       '-vcodec': 'libx264',
        #                                       '-pix_fmt': 'yuv420p',
        #                                       '-r': fps,
        #                                   },
        #                            verbosity=1)
        # for idx, frame in enumerate(frames):
        #     vid_out.writeFrame(frame)
        # vid_out.close()

    def resave_video(self, video_file, start, end,
                     outvideo_file):
        """

        :param start: sec start
        :param end: sec end
        :return:
        """
        fps = self.get_fps(video_file)
        frames = self.load(video_file)
        start_frame = int(start * fps)
        end_frame = int(end * fps)
        frames = frames[start_frame:end_frame]
        self.dump_skv(outvideo_file, frames, fps)
        
    def frame2video(self, folder, output, ext=".jpg"):
        image_files = v_uts.list_all_files(folder, exts=[ext])
        frames = []
        for name in tqdm(image_files):
            frames.append(cv2.imread(name)[:, :, ::-1])

        self.dump(output, frames) 


class NpEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        if isinstance(obj, np.floating):
            return float(obj)
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        return super(NpEncoder, self).default(obj)


def read2byte(filename):
    with open(filename, 'rb') as f:
        file_data = f.read()
    return file_data


def decodeImage(bytesIo):
    import whatimage
    import pyheif
    from PIL import Image

    fmt = whatimage.identify_image(bytesIo)
    if fmt in ['heic', 'avif']:
        i = pyheif.read_heif(bytesIo)
        # Convert to other file format like jpeg
        pi = Image.frombytes(
            mode=i.mode, size=i.size, data=i.data)
        image = np.asarray(pi)
        image = image[:, :, ::-1] # to BGR
        return image
    else:
        return None


def image2Normal(imagePath):
    from skimage import io
    normal = io.imread(imagePath)
    normal = ((np.float32(normal) / 255.0) * 2 - 1.0 )
    return normal

def normal2Image(normal):
    nm_pred_val = (normal + 1.) / 2.
    nm_pred_val = np.uint8(nm_pred_val*255.)
    return nm_pred_val


def dump_normal(filename, normal):
    normal = normal2Image(normal)
    cv2.imwrite(filename + '.png', array)


def dump_prob2image(filename, array):
    """
        dump probility map to image when
        array: [x, height, width] (x = 1, 3, 4)
    """
    class_num = array.shape[0]
    # assert class_num <= 4
    if class_num >= 4 :
        print('warning: only save the first 3 channels')
        array = array[:3, :, :]

    if class_num == 2:
        raise ValueError('not implement')

    array = np.transpose(np.uint8(array * 255), (1, 2, 0))
    if filename.endswith('.png'):
        cv2.imwrite(filename, array)
        return

    cv2.imwrite(filename + '.png', array)
    assert os.path.exists(filename)


def load_image2prob(filename):
    if not filename.endswith('.png'):
        filename = filename + '.png'

    array = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
    array = np.transpose(array, (2, 0, 1)) / 255

    return array


def shape_match(images):
    assert len(images) > 1
    shape = images[0].shape[:2]
    for image in images[1:]:
        cur_shape = image.shape[:2]
        if np.sum(np.abs(np.array(shape) - \
                         np.array(cur_shape))):
            return False

    return True

def append_apex(filename, appex):
    filename = filename.split('.')
    prefix = '.'.join(filename[:-1])
    filetype = filename[-1]
    return '%s_%s.%s' % (prefix, appex, filetype)

def load_json(json_file):
    with open(json_file) as f:
        res = json.load(f)
    return res

def dump_numpy(filename, x: np.ndarray):
    np.savetxt(filename, x, delimiter=' ', fmt='%1.6f')

def dump_json(filename, odgt, w_np=False):
    with open(filename, 'w') as f:
        if not w_np:
            json.dump(odgt, f, indent=4)
        else:
            json.dump(odgt, f, indent=4, cls=NpEncoder)

def dump_jsonl(filename, odgt):
    with open(filename, 'w') as file:
        for entry in odgt:
            json.dump(entry, file)
            file.write('\n')

def dump_pair_data(image_list, 
                   label_list, 
                   outfile, 
                   root='', 
                   data_type='txt', 
                   fields=None):

    if fields is None:
        fields = ["image", "segment"]

    if data_type == 'txt':
        fp = open(outfile, 'w')
        for imagefile, labelfile in zip(image_list, label_list):
            imagefile = imagefile.replace(root, '.')
            labelfile = labelfile.replace(root, '.')
            fp.write('%s %s\n' % (imagefile, labelfile))
        fp.close()

    elif data_type == "odgt":
        odgt = []
        for imagefile, labelfile in zip(image_list, label_list):
            imagefile = imagefile.replace(root, '.')
            labelfile = labelfile.replace(root, '.')
            item = {fields[0]: imagefile, 
                    fields[1]: labelfile}
            odgt.append(item)
        dump_json(outfile, odgt)


def save_xlsx(filename, dicts, sheets=None):
    """
      Save a list of dicts to an xlsx file.
    """
    with pd.ExcelWriter(filename, mode='w') as writer:
        if sheets is None:
            df1 = pd.DataFrame(dicts)
            df1.to_excel(writer, index=False)
            return 
        for sheet in sheets:
            df1 = pd.DataFrame(dicts[sheet])
            df1.to_excel(writer, sheet_name=sheet, index=False)

def load_xlsx(filename, sheets=None):
    assert os.path.exists(filename) , f"File not found: {filename}"
    if sheets is None:
        df = pd.read_excel(filename)
        dict = {}
        for column in df.columns:
            dict[column] = df[column].tolist()
    else:
        dict = {}
        for sheet in sheets:
            df = pd.read_excel(filename, sheet_name=sheet)
            cur_dict = {}
            for column in df.columns:
                cur_dict[column] = df[column].tolist()
            print(cur_dict.keys())
            dict[sheet] = cur_dict
    print(dict.keys())
    return dict

def dump_lines(filename, file_list):
    f = open(filename, 'w')
    tbar = tqdm(file_list)
    for i, elements in enumerate(tbar):
        if isinstance(elements, (tuple, list)):
            line = ' '.join(elements)
        elif isinstance(elements, str):
            line = elements
        appex = '' if i == len(file_list)  - 1 else '\n'
        f.write('%s%s' % (line, appex))

    f.close()


def load_lines(txt_file):
    lines = [line.strip() for line in open(txt_file, 'r')]
    return lines


def load_jsonl(jsonl_file):
    # List to hold all JSON objects
    data = []

    # Open the file and read line by line
    with open(jsonl_file, 'r') as file:
        for line in file:
            # Each line is a JSON object, parse it and append to the list
            json_object = json.loads(line)
            data.append(json_object)
    return data

def load_yaml(yaml_file):
    with open(yaml_file, "r") as f:
        yaml_dict = yaml.safe_load(f) 
    return yaml_dict


def load_odgt(odgt):
    try:
        samples = [json.loads(x.rstrip()) \
                            for x in open(odgt, 'r')][0]
    except:
        samples = load_json(odgt)

    print(samples[0].keys())
    return samples

def fuse_odgt(odgt_files):
    """
        odgt_files:
    """
    odgt_full = []
    for odgt_file in odgt_files:
        odgt = load_odgt(odgt_file)
        odgt_full = odgt_full + odgt

    return odgt_full


def load_video_first_frame(video_name):
    cap = cv2.VideoCapture(video_name)
    if(cap.isOpened()):
        ret, frame = cap.read()
    else:
        raise ValueError("can not read %s" % video_name)

    return frame


def load_lines(txt_file):
    lines = [line.strip() for line in open(txt_file, 'r')]
    return lines


def load_csv(csv_file):
    import csv
    lines = []
    with open(csv_file) as f:
        reader = csv.reader(f, delimiter=',')
        for row in reader:
            lines.append(row)
    return lines[1:]


# cat multi files in to a single file
def cat_files(files, output):
    all_lines = []
    for filename in files:
        lines = load_lines(filename)
        all_lines = all_lines + lines
    dump_lines(output, all_lines)


class SkipExist:
    def __init__(self,
                 processor,
                 ioType='image',
                 need_res=False,
                 rerun=False):
        self.ioType = ioType
        self.io = IOShop(self.ioType).io
        self.processor = processor
        self.rerun = rerun
        self.need_res = need_res

    def __call__(self, *args, **kwargs):
        assert 'filename' in kwargs
        true_file = '%s.%s' % (kwargs['filename'], self.io.appex)

        if os.path.exists(true_file):
            if self.need_res:
                res = self.io.load(kwargs['filename'])
                return res
        else:
            filename = kwargs['filename']
            del kwargs['filename']
            res = self.processor(*args, **kwargs)
            self.io.dump(filename, res)


def dump_pkl(filename, data):
    import pickle as pkl
    with open(filename, "wb") as fl:
        pkl.dump(data, fl)


def load_pkl(filename):
    import pickle as pkl
    with open(filename, 'rb') as fl:
        res = pkl.load(fl)
    return res


def write_pointcloud(filename, xyz_points, faces=None, rgb_points=None):
    """ 
        creates a .pkl file of the point clouds generated
    """

    assert xyz_points.shape[1] == 3,'Input XYZ points should be Nx3 float array'
    if rgb_points is None:
        rgb_points = np.ones(xyz_points.shape).astype(np.uint8) * 255
    else:
        rgb_points = rgb_points.astype(np.uint8)
        
    assert xyz_points.shape == rgb_points.shape,\
        f'Input RGB colors should be Nx3 {rgb_points.shape} float array \
            and have same size as input XYZ points {xyz_points.shape}'

    # Write header of .ply file
    fid = open(filename,'wb')
    fid.write(bytes('ply\n', 'utf-8'))
    fid.write(bytes('format binary_little_endian 1.0\n', 'utf-8'))
    fid.write(bytes('element vertex %d\n'%xyz_points.shape[0], 'utf-8'))
    fid.write(bytes('property float x\n', 'utf-8'))
    fid.write(bytes('property float y\n', 'utf-8'))
    fid.write(bytes('property float z\n', 'utf-8'))
    fid.write(bytes('property uchar red\n', 'utf-8'))
    fid.write(bytes('property uchar green\n', 'utf-8'))
    fid.write(bytes('property uchar blue\n', 'utf-8'))
    fid.write(bytes('end_header\n', 'utf-8'))

    # Write 3D points to .ply file
    for i in range(xyz_points.shape[0]):
        fid.write(bytearray(struct.pack("fffccc",xyz_points[i,0],xyz_points[i,1],xyz_points[i,2],
                                        rgb_points[i,0].tostring(),rgb_points[i,1].tostring(),
                                        rgb_points[i,2].tostring())))
    if faces is not None:
        for face in faces:
            fid.write(struct.pack("<B", face[0]))
            fid.write(struct.pack("<{}i".format(face[0]), *face[1]))
 
    fid.close()


def read_ply(filename):
    # Load the PLY file
    ply_data = PlyData.read(filename)
    
    # Access the vertex data
    vertex_data = ply_data['vertex']
    
    # Extract x, y, z coordinates as a numpy array
    points = np.vstack((vertex_data['x'], vertex_data['y'], vertex_data['z'])).T
    
    return points


def load_obj(file_path):
    verts = []
    normals = []
    uvs = []
    material_colors = []
    texture_images = []
    texture_atlas = []

    faces_verts = []
    faces_normals = []
    faces_textures = []
    faces_materials = []

    with open(file_path, 'r') as file:
        for line in file:
            if line.startswith('v '):
                vertex = [float(v) for v in line.split()[1:]]
                verts.append(vertex)
            elif line.startswith('vn '):
                normal = [float(n) for n in line.split()[1:]]
                normals.append(normal)
            elif line.startswith('vt '):
                uv = [float(u) for u in line.split()[1:]]
                uvs.append(uv)
            elif line.startswith("mtllib "):
                mtl_name = line.split()[1]
            elif line.startswith('vc '):
                color = [float(c) for c in line.split()[1:]]
                material_colors.append(color)
            elif line.startswith('usemtl '):
                material = line.split()[1]
                texture_images.append(material)
            elif line.startswith('f '):
                face_data = line.split()[1:]
                face_verts = []
                face_normals = []
                face_textures = []
                for face in face_data:
                    res = face.split('/')
                    vert = res[0]
                    face_verts.append(int(vert))
                    if len(res) == 2:
                        texture = res[1]
                        face_textures.append(int(texture))
                    if len(res) == 3:
                        normal = res[2]
                        face_normals.append(int(normal))
                faces_verts.append(face_verts)
                faces_normals.append(face_normals)
                faces_textures.append(face_textures)
                faces_materials.append(len(texture_images) - 1)

    mtl_file = f"{os.path.dirname(file_path)}/{mtl_name}"
    with open(mtl_file, 'r') as file:
        for line in file:
            if line.startswith("map_Kd"):
                image_name = line.split()[1]
                break
    
    assert len(texture_images) == 1
    texture_name = texture_images[0]

    image = cv2.imread(f"{os.path.dirname(file_path)}/{image_name}")
    properties = Aux(
        normals=np.array(normals), 
        verts_uvs=np.array(uvs), 
        material_colors=DEFAULT_MATERIAL, 
        texture_images={texture_name: np.float32(image)/ 255.0}, 
        texture_atlas=None)
    
    faces_verts=np.array(faces_verts)
    num_faces = faces_verts.shape[0]
    faces = Faces(
        verts_idx=faces_verts, 
        normals_idx=np.ones(faces_verts.shape) * -1, 
        textures_idx=np.array(faces_textures), 
        materials_idx=np.zeros(num_faces))

    obj = Obj(np.array(verts), faces, properties)
    return obj


def export_obj(filename, obj, 
               include_normals=False, 
               include_textures=True):
    """
    Export the given object to an .obj file with optional normals and textures.
    
    Args:
        filename (str): Path to the output .obj file (without the extension).
        obj (namedtuple): Object containing vertices, faces, and properties.
        include_normals (bool): Flag to include normals in the .obj file.
        include_textures (bool): Flag to include textures in the .obj file.
    """
    material_name = list(obj.properties.texture_images.keys())[0]

    # Write obj file
    name = os.path.basename(filename)
    with open(filename + ".obj", "w") as f:
        f.write("\n")

        if include_textures:
            f.write(f"mtllib {name}.mtl\n")
            f.write("\n")

        for vert in obj.verts:
            x, y, z = vert
            f.write(f"v {x} {y} {z}\n")

        if include_textures:
            for uv in obj.properties.verts_uvs:
                x, y = uv
                f.write(f"vt {x} {y}\n")
            f.write(f"usemtl {material_name}\n")

        num_faces = obj.faces.verts_idx.shape[0]
        for i in range(num_faces):
            f0, f1, f2 = obj.faces.verts_idx[i]
            if include_textures:
                t0, t1, t2 = obj.faces.textures_idx[i]
                if t0 == -1:
                    f.write(f"f {f0} {f1} {f2}\n")
                    continue
                f.write(f"f {f0}/{t0} {f1}/{t1} {f2}/{t2}\n")
            else:
                f.write(f"f {f0} {f1} {f2}\n")

    # Write mtl file
    if include_textures:
        output_dir = os.path.dirname(filename)
        with open(f"{output_dir}/{name}.mtl", "w") as f:
            f.write(f"newmtl {material_name}\n")
            f.write(f"map_Kd {name}.png\n")

            material_colors = obj.properties.material_colors[material_name]
            r, g, b = material_colors["ambient_color"]
            f.write(f"Ka {r} {g} {b}\n")
            r, g, b = material_colors["diffuse_color"]
            f.write(f"Kd {r} {g} {b}\n")
            r, g, b = material_colors["specular_color"]
            f.write(f"Ks {r} {g} {b}\n")
            s = material_colors["shininess"]
            f.write(f"Ns {s}\n")

        # Save texture image
        image = obj.properties.texture_images[material_name] * 255
        texture_img = f"{output_dir}/{name}.png"
        cv2.imwrite(texture_img, image)

    return


def resave_to_video():
    folder = "/Users/peng/Downloads/DenseAR/Mesh/"
    
    vname = "0037438511"
    image_num = 125
    frames = []
    d_frames = []
    crop = [0, 650, 1080, 1270]
    for i in tqdm(range(image_num)):
        name = f"{folder}/{vname}/{i}.jpg"
        d_name = f"{folder}/{vname}/{i}.tiff"
        img = np.array(Image.open(name))
        depth = np.array(Image.open(d_name))
        if img is None:
            continue
        img = img[crop[0]:crop[2], crop[1]:crop[3]]
        depth = depth[crop[0]:crop[2], crop[1]:crop[3]]
        depth = 1.0 / np.maximum(depth, 1e-10)
        depth = p_uts.depth2color(depth, max_d=50)
        frames.append(img)
        d_frames.append(depth)
        
    vio = io_uts.VideoIO()
    video_file = f"{folder}/{vname}.mp4"
    d_video_file = f"{folder}/{vname}_d.mp4"
    vio.dump_skv(video_file, frames, fps=24)
    vio.dump_skv(d_video_file, d_frames, fps=24)


def test_depth_8uc3_encode():
    depth = np.random.rand(480, 640) * 200
    dio = DepthIO()
    depth_encode = dio.to8UC3(depth)
    depth_decode = dio.read8UC3(depth_encode)
    print(depth, depth_decode)
    assert np.sum(np.abs(depth - depth_decode)) / (480 * 640) < 1e-3


########### copy from gta code ################
@functools.lru_cache()
def build_mesh(w, h):
    w = np.linspace(-1.0, 1.0, num=w, dtype=np.float32)
    h = np.linspace(1.0, -1.0, num=h, dtype=np.float32)
    return np.stack(np.meshgrid(w, h), axis=0)


def build_proj_matrix(fov, aspect):
    proj = np.zeros((4, 4))
    proj[0, 0] = 1.0 / np.tan(np.radians(fov / 2)) / aspect
    proj[1, 1] = 1.0 / np.tan(np.radians(fov / 2))
    proj[2, 2] = 0.00001502  # reverse-engineered get from shader
    proj[2, 3] = 0.15000225  # reverse-engineered get from shader
    proj[3, 2] = -1.0
    return proj


def zbuffer_to_depth(zbuffer, fov):
    height, width = zbuffer.shape[:2]
    aspect = width / height

    mesh = build_mesh(width, height)

    if len(zbuffer.shape) != 3:
        zbuffer = np.expand_dims(zbuffer, 0)

    pcloud = np.concatenate((mesh, zbuffer, np.ones_like(zbuffer)), 0)
    pcloud = pcloud.reshape(4, height * width)

    proj_matrix = build_proj_matrix(fov, aspect)

    pcloud = np.linalg.inv(proj_matrix) @ pcloud
    depth = -pcloud[2] / pcloud[3]

    focal_cv = proj_matrix[0, 0] * width / 2.0

    return depth.reshape(height, width), focal_cv

def test_zbuffer_to_depth():
    # root = "E:/Dataset/GTA/Stereo_0/"
    # name = root + "1-130423915874"
    name = "E:/depth_video/0036696165/1"
    config = load_json(name + ".json")
    fov = config["fov"]
    zbuffer = cv2.imread(name + ".tiff", cv2.IMREAD_UNCHANGED)
    depth, focal = zbuffer_to_depth(zbuffer, fov)
    print(depth)

def fuse_frames_of_depth_video():
    """
        frames: list of images or video
    """
    def frame_to_video(video_dir, video_name):
        frames = v_uts.list_all_files(video_dir, exts=['jpg'])
        rgb_video = f"{video_name}.mp4"
        depth_video = f"{video_name}_d.avi"
        cam_file = f"{video_name}.json"

        dio = DepthIO()
        imgs = []
        depths = []
        cams = []
        print("seq len:", len(frames))
        for i, frame in tqdm(enumerate(frames)):
            name = f"{video_dir}/{i}.jpg"
            d_name = f"{video_dir}/{i}.tiff"
            c_name = f"{video_dir}/{i}.json"
            img = np.array(Image.open(name))
            depth = np.array(Image.open(d_name))
            cam = load_json(c_name)
            depth, focal = zbuffer_to_depth(depth, cam['fov'])
            depth = dio.to8UC3(depth)
            imgs.append(img)
            depths.append(depth)
            cam['focal'] = focal
            cams.append(cam)
            # if i > 30:
            #     break
        
        vio = VideoIO()
        vio.dump(rgb_video, imgs)
        vio.dump(depth_video, depths, lossless=True)
        dump_json(cam_file, cams)
        
    folder = "E:/depth_video/"
    output = "E:/depth_video_resave/"

    v_uts.mkdir_if_need(output)
    folder_names = v_uts.list_all_folders(folder)
    for folder_name in tqdm(folder_names[1:]):
        folder_name = folder_name.replace('\\', '/')
        vid_name = folder_name.split('/')[-2]
        print(folder_name, vid_name)
        output_video = f"{output}/{vid_name}"
        frame_to_video(folder_name, video_name=output_video)
        # break


def save_xlsx(filename, dicts, sheets=None):
    with pd.ExcelWriter(filename, mode='w') as writer:
        if sheets is None:
            df1 = pd.DataFrame(dicts)
            df1.to_excel(writer, index=False)
            return 
        for sheet in sheets:
            df1 = pd.DataFrame(dicts[sheet])
            df1.to_excel(writer, sheet_name=sheet, index=False)

def load_xlsx(filename, sheets=None):
    assert os.path.exists(filename) , f"File not found: {filename}"
    if sheets is None:
        df = pd.read_excel(filename)
        dict = {}
        for column in df.columns:
            dict[column] = df[column].tolist()
    else:
        dict = {}
        for sheet in sheets:
            df = pd.read_excel(filename, sheet_name=sheet)
            cur_dict = {}
            for column in df.columns:
                cur_dict[column] = df[column].tolist()
            print(cur_dict.keys())
            dict[sheet] = cur_dict
    print(dict.keys())
    return dict


def get_sheet_list(dict, sheets=None, key="url"):
    images_list = [dict[key]] if sheets is None else [dict[sheet_name][key] for sheet_name in sheets]
    images_full = []

    for images, sheet in zip(images_list, sheets):
        print(f"{sheet}: {len(images)}")
        images_full = images_full + images

    return images_full

def test_load_save_obj():
    image_name = "000000243355_zebra"
    obj = f"./unit_test/{image_name}.obj"
    obj = load_obj(obj)
    export_obj(f"./unit_test/{image_name}_resave", obj)




if __name__ == '__main__':
    # test = [(1,2), (3,4)]
    # dump_pkl('test.pkl', test)
    # print(load_pkl('test.pkl'))
    # xyz = np.random.rand(1000, 3)
    # write_pointcloud("test.ply", xyz)

    # xyz = np.random.rand(1000, 3)
    # write_pointcloud("test.ply", xyz)
    # pass
    # test_depth_8uc3_encode()
    # test_zbuffer_to_depth()
    # fuse_frames_of_depth_video()
    test_load_save_obj()