Spaces:
Running
Running
Upload 2 files
Browse files- app.py +33 -0
- dbimutils.py +68 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification
|
4 |
+
from transformers import AutoModelForImageClassification
|
5 |
+
from torch import nn
|
6 |
+
import dbimutils as utils
|
7 |
+
|
8 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
|
10 |
+
image_processor = AutoImageProcessor.from_pretrained("Muinez/artwork-scorer")
|
11 |
+
model = AutoModelForImageClassification.from_pretrained("Muinez/artwork-scorer", problem_type="multi_label_classification").to(DEVICE)
|
12 |
+
|
13 |
+
def predict(img):
|
14 |
+
file = utils.preprocess_image(img)
|
15 |
+
encoded = image_processor(file, return_tensors="pt").to(DEVICE)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
logits = model(**encoded).logits.cpu()
|
19 |
+
|
20 |
+
outputs = nn.functional.sigmoid(logits)
|
21 |
+
|
22 |
+
return outputs[0][0], outputs[0][1]
|
23 |
+
|
24 |
+
gr.Interface(
|
25 |
+
title="Artwork scorer",
|
26 |
+
description="Predicts score (0-1) for artwork.\nCould be wrong!!!\nDoes not work very well with nsfw i.e. it was not trained on it",
|
27 |
+
fn=predict,
|
28 |
+
allow_flagging="never",
|
29 |
+
inputs=gr.Image(type="pil"),
|
30 |
+
outputs=[gr.Number(label="Score"), gr.Number(label="View count ratio (probably useless)")]
|
31 |
+
).launch()
|
32 |
+
|
33 |
+
|
dbimutils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DanBooru IMage Utility functions
|
2 |
+
# Taken from https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import PIL
|
8 |
+
|
9 |
+
def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
|
10 |
+
if img.endswith(".gif"):
|
11 |
+
img = Image.open(img)
|
12 |
+
img = img.convert("RGB")
|
13 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
14 |
+
else:
|
15 |
+
img = cv2.imread(img, flag)
|
16 |
+
return img
|
17 |
+
|
18 |
+
|
19 |
+
def smart_24bit(img):
|
20 |
+
if img.dtype is np.dtype(np.uint16):
|
21 |
+
img = (img / 257).astype(np.uint8)
|
22 |
+
|
23 |
+
if len(img.shape) == 2:
|
24 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
25 |
+
elif img.shape[2] == 4:
|
26 |
+
trans_mask = img[:, :, 3] == 0
|
27 |
+
img[trans_mask] = [255, 255, 255, 255]
|
28 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
29 |
+
return img
|
30 |
+
|
31 |
+
|
32 |
+
def make_square(img, target_size):
|
33 |
+
old_size = img.shape[:2]
|
34 |
+
desired_size = max(old_size)
|
35 |
+
desired_size = max(desired_size, target_size)
|
36 |
+
|
37 |
+
delta_w = desired_size - old_size[1]
|
38 |
+
delta_h = desired_size - old_size[0]
|
39 |
+
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
|
40 |
+
left, right = delta_w // 2, delta_w - (delta_w // 2)
|
41 |
+
|
42 |
+
color = [255, 255, 255]
|
43 |
+
new_im = cv2.copyMakeBorder(
|
44 |
+
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
|
45 |
+
)
|
46 |
+
return new_im
|
47 |
+
|
48 |
+
|
49 |
+
def smart_resize(img, size):
|
50 |
+
# Assumes the image has already gone through make_square
|
51 |
+
if img.shape[0] > size:
|
52 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
|
53 |
+
elif img.shape[0] < size:
|
54 |
+
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
|
55 |
+
return img
|
56 |
+
|
57 |
+
def preprocess_image(img):
|
58 |
+
image = img.convert('RGBA')
|
59 |
+
new_image = PIL.Image.new('RGBA', image.size, 'WHITE')
|
60 |
+
new_image.paste(image, mask=image)
|
61 |
+
image = new_image.convert('RGB')
|
62 |
+
image = np.asarray(image)
|
63 |
+
|
64 |
+
image = make_square(image, 384)
|
65 |
+
image = smart_resize(image, 384)
|
66 |
+
image = image.astype(np.float32)
|
67 |
+
|
68 |
+
return Image.fromarray(np.uint8(image))
|