File size: 1,425 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
caption_model: transformer
noamopt: true
noamopt_warmup: 20000
label_smoothing: 0.0
input_json: data/cocotalk.json
input_label_h5: data/cocotalk_label.h5
input_fc_dir: data/cocotalk_clip_RN50_fc
input_att_dir: data/cocotalk_clip_RN50_att
input_clipscore_vis_dir: data/cocotalk_clipscore_vis
seq_per_img: 5
batch_size: 160
learning_rate: 0.0005

checkpoint_path: save/clipRN50_clips_grammar/clipRN50_clips_grammar

use_multi_rewards: true
use_grammar: true
use_grammar_baseline: true
# clip_load_path: '/scratch-space/retrieval/save/clip_negative_text/clip_negative_text-epoch=10.ckpt'
clip_load_path: 'retrieval/save/clip_negative_text/clip_negative_text-epoch=12.ckpt'

# Notice: because I'm to lazy, I reuse the option name for RNNs to set the hyperparameters for transformer:
# N=num_layers
# d_model=input_encoding_size
# d_ff=rnn_size

# will be ignored
num_layers: 6
input_encoding_size: 512
rnn_size: 2048

# Transformer config
N_enc: 6
N_dec: 6
d_model: 512
d_ff: 2048
num_att_heads: 8
dropout: 0.1


learning_rate_decay_start: 0
scheduled_sampling_start: -1 
save_checkpoint_every: 3000
language_eval: 1
val_images_use: 5000
max_epochs: 15
train_sample_n: 5

REFORWARD: false

# _BASE_: transformer.yml
reduce_on_plateau: false
noamopt: false
learning_rate: 0.000005
learning_rate_decay_start: -1

self_critical_after: 15
max_epochs: 40

verbose: false
precision: 32

use_clipscore: true
clipscore_reward_weight: 2.0