Spaces:
Runtime error
Runtime error
import torch | |
from . import losses | |
from ..utils.rewards import init_scorer, get_self_critical_reward, get_self_critical_clipscore_reward | |
from ..utils.clipscore import CLIPScore | |
import numpy as np | |
class LossWrapper(torch.nn.Module): | |
def __init__(self, model, opt): | |
super(LossWrapper, self).__init__() | |
self.opt = opt | |
self.model = model | |
if opt.label_smoothing > 0: | |
self.crit = losses.LabelSmoothing(smoothing=opt.label_smoothing) | |
else: | |
self.crit = losses.LanguageModelCriterion() | |
self.rl_crit = losses.RewardCriterion() | |
self.struc_crit = losses.StructureLosses(opt) | |
self.clipscore_model = None | |
if self.opt.use_clipscore: | |
use_grammar = getattr(self.opt, 'use_grammar', False) | |
joint_out = getattr(self.opt, 'joint_out', False) | |
self.clipscore_model = CLIPScore( | |
mode=opt.clipscore_mode, | |
use_grammar=use_grammar, | |
joint_out=joint_out, | |
) | |
for p in self.clipscore_model.parameters(): | |
p.requires_grad = False | |
if use_grammar: | |
state_dict = torch.load(self.opt.clip_load_path, map_location='cpu') | |
self.clipscore_model.load_state_dict(state_dict['state_dict']) | |
def forward(self, fc_feats, att_feats, labels, masks, att_masks, gts, gt_indices, | |
sc_flag, struc_flag, clip_vis_feats=None): | |
opt = self.opt | |
out = {} | |
if struc_flag: | |
if opt.structure_loss_weight < 1: | |
lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) | |
else: | |
lm_loss = torch.tensor(0).type_as(fc_feats) | |
if opt.structure_loss_weight > 0: | |
gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, | |
opt={'sample_method':opt.train_sample_method, | |
'beam_size':opt.train_beam_size, | |
'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ | |
or not 'margin' in opt.structure_loss_type, | |
'sample_n': opt.train_sample_n}, | |
mode='sample') | |
gts = [gts[_] for _ in gt_indices.tolist()] | |
struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) | |
else: | |
struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), | |
'reward': torch.tensor(0).type_as(fc_feats)} | |
loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] | |
out['lm_loss'] = lm_loss | |
out['struc_loss'] = struc_loss['loss'] | |
out['reward'] = struc_loss['reward'] | |
elif not sc_flag: | |
loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) | |
else: | |
self.model.eval() | |
with torch.no_grad(): | |
greedy_res, _ = self.model(fc_feats, att_feats, att_masks, | |
mode='sample', | |
opt={'sample_method': opt.sc_sample_method, | |
'beam_size': opt.sc_beam_size}) | |
self.model.train() | |
gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, | |
opt={'sample_method':opt.train_sample_method, | |
'beam_size':opt.train_beam_size, | |
'sample_n': opt.train_sample_n}, | |
mode='sample') | |
gts = [gts[_] for _ in gt_indices.tolist()] | |
if getattr(self.opt, 'use_multi_rewards', False): | |
assert self.opt.use_clipscore | |
clipscore_reward_normalized, clipscore_unnormalized_mean, grammar_rewards = get_self_critical_clipscore_reward( | |
greedy_res, gts, gen_result, self.opt, self.clipscore_model, clip_vis_feats, self.model.vocab) | |
if self.opt.clipscore_mode == 'clip_s': | |
out['CLIP-S'] = clipscore_unnormalized_mean | |
elif self.opt.clipscore_mode == 'refclip_s': | |
out['RefCLIP-S'] = clipscore_unnormalized_mean | |
if getattr(self.opt, 'use_grammar', False): | |
out['grammar_reward'] = grammar_rewards.mean() | |
reward = clipscore_reward_normalized + grammar_rewards | |
else: | |
assert grammar_rewards is None | |
cider_reward_normalized, cider_unnormalized_mean = get_self_critical_reward( | |
greedy_res, gts, gen_result, self.opt) | |
out['CIDEr'] = cider_unnormalized_mean | |
if isinstance(cider_reward_normalized, np.ndarray): | |
cider_reward_normalized = torch.from_numpy(cider_reward_normalized).to(clipscore_reward_normalized.device) | |
reward = clipscore_reward_normalized + cider_reward_normalized | |
else: | |
if self.opt.use_clipscore: | |
clipscore_reward_normalized, clipscore_unnormalized_mean, _ = get_self_critical_clipscore_reward( | |
greedy_res, gts, gen_result, self.opt, self.clipscore_model, clip_vis_feats, self.model.vocab) | |
if self.opt.clipscore_mode == 'clip_s': | |
out['CLIP-S'] = clipscore_unnormalized_mean | |
elif self.opt.clipscore_mode == 'refclip_s': | |
out['RefCLIP-S'] = clipscore_unnormalized_mean | |
reward = clipscore_reward_normalized | |
else: | |
cider_reward_normalized, cider_unnormalized_mean = get_self_critical_reward( | |
greedy_res, gts, gen_result, self.opt) | |
out['CIDEr'] = cider_unnormalized_mean | |
reward = cider_reward_normalized | |
if isinstance(reward, np.ndarray): | |
reward = torch.from_numpy(reward) | |
reward = reward.to(sample_logprobs) | |
loss = self.rl_crit(sample_logprobs, gen_result.data, reward) | |
out['reward'] = reward[:,0].mean() | |
out['loss'] = loss | |
return out | |