akhaliq's picture
akhaliq HF staff
add files
c80917c
raw
history blame
8.77 kB
import torch
import torch.nn as nn
from ..utils.rewards import get_scores, get_self_cider_scores
class RewardCriterion(nn.Module):
def __init__(self):
super(RewardCriterion, self).__init__()
def forward(self, input, seq, reward):
input = input.gather(2, seq.unsqueeze(2)).squeeze(2)
input = input.reshape(-1)
reward = reward.reshape(-1)
mask = (seq>0).to(input)
mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1).reshape(-1)
output = - input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
class StructureLosses(nn.Module):
"""
This loss is inspired by Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018).
"""
def __init__(self, opt):
super(StructureLosses, self).__init__()
self.opt = opt
self.loss_type = opt.structure_loss_type
def forward(self, input, seq, data_gts):
"""
Input is either logits or log softmax
"""
out = {}
batch_size = input.size(0)# batch_size = sample_size * seq_per_img
seq_per_img = batch_size // len(data_gts)
assert seq_per_img == self.opt.train_sample_n, seq_per_img
mask = (seq>0).to(input)
mask = torch.cat([mask.new_full((mask.size(0), 1), 1), mask[:, :-1]], 1)
scores = get_scores(data_gts, seq, self.opt)
scores = torch.from_numpy(scores).type_as(input).view(-1, seq_per_img)
out['reward'] = scores #.mean()
if self.opt.entropy_reward_weight > 0:
entropy = - (F.softmax(input, dim=2) * F.log_softmax(input, dim=2)).sum(2).data
entropy = (entropy * mask).sum(1) / mask.sum(1)
print('entropy', entropy.mean().item())
scores = scores + self.opt.entropy_reward_weight * entropy.view(-1, seq_per_img)
# rescale cost to [0,1]
costs = - scores
if self.loss_type == 'risk' or self.loss_type == 'softmax_margin':
costs = costs - costs.min(1, keepdim=True)[0]
costs = costs / costs.max(1, keepdim=True)[0]
# in principle
# Only risk need such rescale
# margin should be alright; Let's try.
# Gather input: BxTxD -> BxT
input = input.gather(2, seq.unsqueeze(2)).squeeze(2)
if self.loss_type == 'seqnll':
# input is logsoftmax
input = input * mask
input = input.sum(1) / mask.sum(1)
input = input.view(-1, seq_per_img)
target = costs.min(1)[1]
output = F.cross_entropy(input, target)
elif self.loss_type == 'risk':
# input is logsoftmax
input = input * mask
input = input.sum(1)
input = input.view(-1, seq_per_img)
output = (F.softmax(input.exp()) * costs).sum(1).mean()
# test
# avg_scores = input
# probs = F.softmax(avg_scores.exp_())
# loss = (probs * costs.type_as(probs)).sum() / input.size(0)
# print(output.item(), loss.item())
elif self.loss_type == 'max_margin':
# input is logits
input = input * mask
input = input.sum(1) / mask.sum(1)
input = input.view(-1, seq_per_img)
_, __ = costs.min(1, keepdim=True)
costs_star = _
input_star = input.gather(1, __)
output = F.relu(costs - costs_star - input_star + input).max(1)[0] / 2
output = output.mean()
# sanity test
# avg_scores = input + costs
# scores_with_high_target = avg_scores.clone()
# scores_with_high_target.scatter_(1, costs.min(1)[1].view(-1, 1), 1e10)
# target_and_offender_index = scores_with_high_target.sort(1, True)[1][:, 0:2]
# avg_scores = avg_scores.gather(1, target_and_offender_index)
# target_index = avg_scores.new_zeros(avg_scores.size(0), dtype=torch.long)
# loss = F.multi_margin_loss(avg_scores, target_index, size_average=True, margin=0)
# print(loss.item() * 2, output.item())
elif self.loss_type == 'multi_margin':
# input is logits
input = input * mask
input = input.sum(1) / mask.sum(1)
input = input.view(-1, seq_per_img)
_, __ = costs.min(1, keepdim=True)
costs_star = _
input_star = input.gather(1, __)
output = F.relu(costs - costs_star - input_star + input)
output = output.mean()
# sanity test
# avg_scores = input + costs
# loss = F.multi_margin_loss(avg_scores, costs.min(1)[1], margin=0)
# print(output, loss)
elif self.loss_type == 'softmax_margin':
# input is logsoftmax
input = input * mask
input = input.sum(1) / mask.sum(1)
input = input.view(-1, seq_per_img)
input = input + costs
target = costs.min(1)[1]
output = F.cross_entropy(input, target)
elif self.loss_type == 'real_softmax_margin':
# input is logits
# This is what originally defined in Kevin's paper
# The result should be equivalent to softmax_margin
input = input * mask
input = input.sum(1) / mask.sum(1)
input = input.view(-1, seq_per_img)
input = input + costs
target = costs.min(1)[1]
output = F.cross_entropy(input, target)
elif self.loss_type == 'new_self_critical':
"""
A different self critical
Self critical uses greedy decoding score as baseline;
This setting uses the average score of the rest samples as baseline
(suppose c1...cn n samples, reward1 = score1 - 1/(n-1)(score2+..+scoren) )
"""
baseline = (scores.sum(1, keepdim=True) - scores) / (scores.shape[1] - 1)
scores = scores - baseline
# self cider used as reward to promote diversity (not working that much in this way)
if getattr(self.opt, 'self_cider_reward_weight', 0) > 0:
_scores = get_self_cider_scores(data_gts, seq, self.opt)
_scores = torch.from_numpy(_scores).type_as(scores).view(-1, 1)
_scores = _scores.expand_as(scores - 1)
scores += self.opt.self_cider_reward_weight * _scores
output = - input * mask * scores.view(-1, 1)
output = torch.sum(output) / torch.sum(mask)
out['loss'] = output
return out
class LanguageModelCriterion(nn.Module):
def __init__(self):
super(LanguageModelCriterion, self).__init__()
def forward(self, input, target, mask):
if target.ndim == 3:
target = target.reshape(-1, target.shape[2])
mask = mask.reshape(-1, mask.shape[2])
# truncate to the same size
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)].to(input)
output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask
# Average over each token
output = torch.sum(output) / torch.sum(mask)
return output
class LabelSmoothing(nn.Module):
"Implement label smoothing."
def __init__(self, size=0, padding_idx=0, smoothing=0.0):
super(LabelSmoothing, self).__init__()
self.criterion = nn.KLDivLoss(size_average=False, reduce=False)
# self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
# self.size = size
self.true_dist = None
def forward(self, input, target, mask):
if target.ndim == 3:
target = target.reshape(-1, target.shape[2])
mask = mask.reshape(-1, mask.shape[2])
# truncate to the same size
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)]
input = input.reshape(-1, input.size(-1))
target = target.reshape(-1)
mask = mask.reshape(-1).to(input)
# assert x.size(1) == self.size
self.size = input.size(1)
# true_dist = x.data.clone()
true_dist = input.data.clone()
# true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.fill_(self.smoothing / (self.size - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
# true_dist[:, self.padding_idx] = 0
# mask = torch.nonzero(target.data == self.padding_idx)
# self.true_dist = true_dist
return (self.criterion(input, true_dist).sum(1) * mask).sum() / mask.sum()