Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,55 +25,24 @@ from fastai.learner import load_learner
|
|
25 |
model = load_learner(
|
26 |
hf_hub_download("NDugar/horse_to_zebra_cycle_GAN", "h2z-85epoch.pth")
|
27 |
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
img = adjust_image_for_model(img)
|
36 |
-
input_image = img.convert(COLOUR_MODEL)
|
37 |
-
input_image = np.asarray(input_image)
|
38 |
-
input_image = input_image[:, :, [2, 1, 0]]
|
39 |
-
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
40 |
-
input_image = -1 + 2 * input_image
|
41 |
|
42 |
-
if enable_gpu:
|
43 |
-
logger.info(f"CUDA found. Using GPU.")
|
44 |
-
input_image = Variable(input_image).cuda()
|
45 |
-
else:
|
46 |
-
logger.info(f"CUDA not found. Using CPU.")
|
47 |
-
input_image = Variable(input_image).float()
|
48 |
-
model = get_model()
|
49 |
-
output_image = model(input_image)
|
50 |
-
output_image = output_image[0]
|
51 |
-
# BGR -> RGB
|
52 |
-
output_image = output_image[[2, 1, 0], :, :]
|
53 |
-
output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
description = "Gradio Demo for CycleGAN"
|
58 |
-
|
59 |
-
gr.Interface(
|
60 |
-
fn=inference,
|
61 |
-
inputs=[
|
62 |
-
gr.inputs.Image(
|
63 |
-
type="pil",
|
64 |
-
label="Input Photo",
|
65 |
-
),
|
66 |
-
],
|
67 |
-
outputs=gr.outputs.Image(
|
68 |
-
type="pil",
|
69 |
-
label="Output Image",
|
70 |
-
),
|
71 |
-
title=title,
|
72 |
-
description=description,
|
73 |
-
article=article,
|
74 |
-
examples=examples,
|
75 |
-
allow_flagging="never",
|
76 |
-
allow_screenshot=False,
|
77 |
-
).launch(enable_queue=True)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
25 |
model = load_learner(
|
26 |
hf_hub_download("NDugar/horse_to_zebra_cycle_GAN", "h2z-85epoch.pth")
|
27 |
)
|
28 |
+
def generate_img(img_path):
|
29 |
+
img = tf.io.read_file(img_path)
|
30 |
+
img = tf.image.decode_png(img)
|
31 |
+
img = tf.expand_dims(img, axis=0)
|
32 |
+
img = preprocess_test_image(img)
|
33 |
+
prediction = model(img, training=False)[0].numpy()
|
34 |
+
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
image = gr.inputs.Image(type="filepath")
|
38 |
+
op = gr.outputs.Image(type="numpy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
iface = gr.Interface(
|
41 |
+
generate_img,
|
42 |
+
image,
|
43 |
+
op,
|
44 |
+
title="CycleGAN-using UPIT",
|
45 |
+
description='CycleGAN model using Horse to Zebra using UPIT - https://github.com/tmabraham/UPIT'
|
46 |
+
)
|
47 |
|
48 |
+
iface.launch(cache_examples=False)
|