Spaces:
Runtime error
Runtime error
File size: 9,378 Bytes
9d4bfa4 d3aaa0b 56cd27c 6ade7cf 1d33810 9d4bfa4 1d33810 d3aaa0b 56cd27c d3aaa0b 56cd27c 163695f 56cd27c 9d4bfa4 268dd78 6ade7cf 9d4bfa4 d3aaa0b 877dc8a d3aaa0b d87c0e6 d3aaa0b 9d4bfa4 7110d08 95dabf2 6ade7cf 35f2fb6 6ade7cf f2cee81 6ade7cf f2cee81 6ade7cf 1d33810 8fe11ef 640c929 b29af5a c92a43f b29af5a 79bce5c b29af5a 1daf5e4 79bce5c b29af5a 1d33810 ffecd68 1d33810 1daf5e4 1d33810 9d4bfa4 1d33810 9d4bfa4 2808cb2 d3aaa0b 6ade7cf 89d073d 6ade7cf c8ef5d9 6ade7cf 2808cb2 9d4bfa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import tensorflow as tf
import numpy as np
import pandas as pd
import swifter
import json
import re
import requests
import time
from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
# from keras.optimizers.optimizer_v2.rmsprop import RMSProp
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Conv1D, Embedding, MaxPooling1D, GlobalMaxPooling1D, GlobalAveragePooling1D, SpatialDropout1D, LSTM, Dropout, SimpleRNN, Bidirectional, Attention, Activation, GRU, TextVectorization, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.sequence import pad_sequences
import arabicstopwords.arabicstopwords as stp
from nltk.stem.isri import ISRIStemmer
from pyarabic.araby import strip_tashkeel, strip_tatweel
from huggingface_hub import from_pretrained_keras
from collections import Counter
from fastapi import FastAPI, Request, HTTPException
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import threading
# Import the Firebase Admin SDK
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline
from arabert.preprocess import ArabertPreprocessor
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import smtplib
from email.mime.text import MIMEText
import os
import math
import random
import threading
import Classes
# Firebase ininlaziton
cred = credentials.Certificate(
"text-to-emotions-firebase-adminsdk-8isbn-dffbdf01e8.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
# Model summury
model_name="abdalrahmanshahrour/auto-arabic-summarization"
preprocessor = ArabertPreprocessor(model_name="")
tokenizer = AutoTokenizer.from_pretrained(model_name)
modelsummary =AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer)
# Model inilization
isristemmer = ISRIStemmer()
model = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-73P')
# dictinarties for email OTP
emailOTP={}
def stemming(txt):
return isristemmer.stem(txt)
def remove_singleCharacter(text):
text_tokenized = ar.tokenize(text)
clean_txt = ''
for word in text_tokenized:
if len(word) != 1:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
# remove_punctuations
def remove_punctuations(text):
punc = '''()-[]{};:'"\,<>./@#$%^&*،؛_~'''
arabic_punctuations = '''`÷×؛_ـ،/:".,'~¦+|”…“–ـ=﴾﴿ ﹱ ﹹ ⸀˓• ב'''
punctuations_list = punc + arabic_punctuations
for x in punctuations_list:
text = text.replace(x, ' ')
return text
def normalize_text(txt):
txt = strip_tashkeel(txt)
txt = strip_tatweel(txt)
txt = ''.join(txt[i] for i in range(len(txt)) if i ==
0 or txt[i-1] != txt[i]) # remove repeated characters
return txt
def remove_stopwords(txt, path="stopword.txt"):
text_tokenized = txt.split(' ')
clean_txt = ''
# useful_words=[]
# filtered_sentence=" "
arabic_stop_words_file = open(path, 'r', encoding='utf-8')
arabic_stop_words = arabic_stop_words_file.read().split('\n')
for word in text_tokenized:
if word not in arabic_stop_words:
clean_txt = clean_txt + word + ' '
return clean_txt[:-1]
def Remove_unwanted(text):
# removing the extra spacing and links
text = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r'^http?:\/\/.*[\r\n]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r"http\S+", " ", text)
text = re.sub(r"https\S+", " ", text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[a-zA-Z]+', ' ', text)
text = re.sub(r"^\s+|\s+$", "", text)
text = re.sub(r"(\s\d+)", " ", text)
text = re.sub(r"$\d+\W+|\b\d+\b|\W+\d+$", " ", text)
text = re.sub(r"\d+", " ", text)
text = re.sub(r'[إأٱآا]', 'ا', text)
text = re.sub(r'ى', '[ي]', text)
text = re.sub(r'ء', '[ؤئ]', text)
text = re.sub(r' +', ' ', text)
return text
def txt_preprocess(text):
text = normalize_text(text)
text = stemming(text)
text = remove_stopwords(text)
text = remove_punctuations(text)
text = Remove_unwanted(text)
return text
def see_if_thereupdates():
f = open("updates.txt", "r")
return f.readline()
def getmodel():
m = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-72P')
return m
def original_values(num):
if num == 0:
return 'anger'
elif num == 1:
return 'sadness'
elif num == 2:
return 'joy'
elif num == 3:
return 'surprise'
elif num == 4:
return 'love'
elif num == 5:
return 'sympathy'
elif num == 6:
return 'fear'
def modelsummary(data):
result = pipeline1(data,
pad_token_id= tokenizer.eos_token_id,
num_beams=4,
repetition_penalty=3.0,
max_length=600,
length_penalty=.50,
no_repeat_ngram_size = 3)[0]['generated_text']
result = remove_punctuations(result)
return { 'summary':result}
def modelpredict(data):
map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'}
text = txt_preprocess(data)
pred=model.predict(pd.Series([data]))
return map[np.argmax(pred,axis=-1)[0]]
#OTP code
def genereteotp (email):
digits = "0123456789"
OTP = ""
for i in range(6):
OTP += digits[math.floor(random.random()*10)]
emailOTP[email]=OTP
otp = "your otp is "+OTP
print("---------------------****---------------------------------------")
print(email)
print(otp)
s = smtplib.SMTP('smtp.gmail.com', 587)
# start TLS for security
s.starttls()
# Authentication
s.login("youssefmk1214@gmail.com", "lipnacjbsxmjpjxm")
# message to be sent
message = otp
# instance of MIMEText
msg = MIMEText(message)
# sender's email address
msg['From'] = "youssefmk1214@gmail.com"
# recipient's email address
msg['To'] = email
# subject of the email
msg['Subject'] = " Shakwa Textual OTP"
print("here to send messege")
# send the message via SMTP server
s.sendmail(msg['From'], msg['To'], msg.as_string())
# terminate the SMTP session
s.quit()
#Threading functions
queuedUnSummurizedShawkas = []
semphoreShakwas=threading.Semaphore(0)
def summrizedshakwas():
global queuedUnSummurizedShawkas
global semphoreShakwas
global db
while True:
semphoreShakwas.acquire()
shawka=queuedUnSummurizedShawkas.pop(0)
tmpdict= modelsummary(shawka.complaintbody)
print(tmpdict)
shawka.summary=tmpdict['summary']
db.collection("complaints").document(shawka.id).update({"summary":shawka.summary})
thread = threading.Thread(target=summrizedshakwas)
thread.start()
#lithening to changes of documnts
callback_done = threading.Event()
def on_snapshot(doc_snapshot, changes, read_time):
global queuedUnSummurizedShawkas
global semphoreShakwas
for doc in doc_snapshot:
# print(doc.to_dict())
shakw = Classes.Shakwa.from_dict(source=doc.to_dict())
shakw.complaintbody
if shakw.summary==None:
queuedUnSummurizedShawkas.append(shakw)
semphoreShakwas.release()
callback_done.set()
docwatch= db.collection("complaints").on_snapshot(on_snapshot,)
# Main Server inilization
app = FastAPI()
@app.get("/")
def index():
return "Hello World"
@app.post("/summary")
async def read_root(request:Request):
json_data = await request.json()
if 'text'in json_data:
return modelsummary(json_data['text'])
else:
raise HTTPException(status_code=400, detail="Missing text value")
@app.post("/getOTPCode")
async def read_root(request:Request):
json_data = await request.json()
if 'email' in json_data:
genereteotp(json_data["email"])
return "message was sent succesufully to "+json_data['email']
else:
raise HTTPException(status_code=400, detail="Missing email value")
@app.post("/verifyOTP")
async def read_root(request:Request):
json_data = await request.json()
if 'email' in json_data and 'otpcode' in json_data:
if json_data['otpcode'] ==emailOTP[json_data['email']] :
return "OTP verified succesufully "
else:
return "OTP Code is wrong "
else:
raise HTTPException(status_code=400, detail="Missing email value")
@app.post("/predict")
async def read_root(request: Request):
json_data = await request.json()
if "mathod" in json_data and json_data["mathod"] == "emotion_predict" and 'text' in json_data:
return modelpredict(json_data["text"])
else:
raise HTTPException(status_code=400, detail="Missing mathod value")
@app.get("/commonwords")
def getcommonwords():
return {'التسجيل': 23, 'مش': 19, 'تطبيق': 18, 'التطبيق': 18, 'التفعيل': 17, 'كود': 13, 'ارسال': 12, 'تسجيل': 12, 'يتم': 12, 'الرقم': 12}
|