santiviquez commited on
Commit
5db7a68
1 Parent(s): 20df2a4

cache dataset

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -1,6 +1,11 @@
1
  import streamlit as st
2
  import nannyml as nml
3
- from sklearn.metrics import f1_score
 
 
 
 
 
4
 
5
  st.title('Is your model degrading?')
6
  st.caption('### :violet[_Estimate_] the performance of an ML model. :violet[_Without ground truth_].')
@@ -25,8 +30,7 @@ new labeled data. In this demo, we show the **Confidence-based Performance Estim
25
  the performance of **classification** models.
26
  """)
27
 
28
- reference_df, analysis_df, analysis_target_df = nml.load_synthetic_car_loan_dataset()
29
- test_f1_score = f1_score(reference_df['repaid'], reference_df['y_pred'])
30
 
31
  st.markdown("#### The prediction task")
32
 
 
1
  import streamlit as st
2
  import nannyml as nml
3
+
4
+ @st.cache_resource
5
+ def get_data():
6
+ reference_df, analysis_df, analysis_target_df = nml.load_synthetic_car_loan_dataset()
7
+ return reference_df, analysis_df, analysis_target_df
8
+
9
 
10
  st.title('Is your model degrading?')
11
  st.caption('### :violet[_Estimate_] the performance of an ML model. :violet[_Without ground truth_].')
 
30
  the performance of **classification** models.
31
  """)
32
 
33
+ reference_df, analysis_df, analysis_target_df = get_data()
 
34
 
35
  st.markdown("#### The prediction task")
36