Nemil's picture
Upload app.py
83ff097 verified
raw
history blame
10.1 kB
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
import torch
from PIL import Image
import requests
import traceback
import os
from huggingface_hub import login
login(token=os.getenv("HF_TOKEN"))
class Image2Text:
def __init__(self):
# Load the GIT coco model
preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.preprocessor = preprocessor_git_large_coco
self.model = model_git_large_coco
self.model.to(self.device)
def image_description(
self,
image_url,
max_length=50,
temperature=0.1,
use_sample_image=False,
):
"""
Generate captions for the given image.
-----
Parameters
image_url: Image URL
The image to generate captions for.
max_length: int
The max length of the generated descriptions.
-----
Returns
str
The generated image description.
"""
caption_git_large_coco = ""
if use_sample_image:
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)
# Generate captions for the image using the GIT coco model
try:
caption_git_large_coco = self._generate_description(image, max_length, False).strip()
return caption_git_large_coco
except Exception as e:
print(e)
traceback.print_exc()
def _generate_description(
self,
image,
max_length=50,
use_float_16=False,
):
"""
Generate captions for the given image.
-----
Parameters
image: PIL.Image
The image to generate captions for.
max_length: int
The max length of the generated descriptions.
use_float_16: bool
Whether to use float16 precision. This can speed up inference, but may lead to worse results.
-----
Returns
str
The generated caption.
"""
# inputs = preprocessor(image, return_tensors="pt").to(device)
pixel_values = self.preprocessor(images=image, return_tensors="pt").pixel_values.to(self.device)
generated_ids = self.model.generate(
pixel_values=pixel_values,
max_length=max_length,
)
generated_caption = self.preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
import json
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
LoraConfig ,
PeftConfig ,
PeftModel ,
get_peft_model ,
prepare_model_for_kbit_training,
)
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
from peft import LoraConfig, get_peft_model
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class Social_Media_Captioner:
def __init__(self, use_finetuned: bool=True, temp=0.1):
self.use_finetuned = use_finetuned
self.MODEL_NAME = "vilsonrodrigues/falcon-7b-instruct-sharded"
self.peft_model_name = "ayush-vatsal/caption_qlora_finetune"
self.model_loaded = False
self.device = "cuda:0"
self._load_model()
self.generation_config = self.model.generation_config
self.generation_config.max_new_tokens = 50
self.generation_config.temperature = temp
self.generation_config.top_p = 0.7
self.generation_config.num_return_sequences = 1
self.generation_config.pad_token_id = self.tokenizer.eos_token_id
self.generation_config.eos_token_id = self.tokenizer.eos_token_id
self.cache: list[dict] = [] # [{"image_decription": "A man", "caption": ["A man"]}]
def _load_model(self):
self.bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
llm_int8_enable_fp32_cpu_offload=True,
bnb_4bit_use_double_quant = True,
bnb_4bit_quant_type= "nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
load_in_8bit_fp32_cpu_offload=True
)
self.model = AutoModelForCausalLM.from_pretrained(
self.MODEL_NAME,
device_map = "auto",
trust_remote_code = True,
quantization_config = self.bnb_config
)
# Defining the tokenizers
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
self.tokenizer.pad_token = self.tokenizer.eos_token
# if self.use_finetuned:
# # LORA Config Model
# self.lora_config = LoraConfig(
# r=16,
# lora_alpha=32,
# target_modules=["query_key_value"],
# lora_dropout=0.05,
# bias="none",
# task_type="CAUSAL_LM"
# )
# self.model = get_peft_model(self.model, self.lora_config)
# # Fitting the adapters
# self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
# self.model = AutoModelForCausalLM.from_pretrained(
# self.peft_config.base_model_name_or_path,
# return_dict = True,
# quantization_config = self.bnb_config,
# device_map= "auto",
# trust_remote_code = True
# )
# self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
# # Defining the tokenizers
# self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
# self.tokenizer.pad_token = self.tokenizer.eos_token
self.model_loaded = True
print("Model Loaded successfully")
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
if not self.model_loaded:
raise Exception("Model not loaded")
try:
prompt = Social_Media_Captioner._prompt(input_text)
if use_cached:
for item in self.cache:
if item['image_description'] == input_text:
return item['caption']
encoding = self.tokenizer(prompt, return_tensors = "pt").to(self.device)
with torch.inference_mode():
outputs = self.model.generate(
input_ids = encoding.input_ids,
attention_mask = encoding.attention_mask,
generation_config = self.generation_config
)
generated_caption = (self.tokenizer.decode(outputs[0], skip_special_tokens=True).split('Caption: "')[-1]).split('"')[0]
if cache_generation:
for item in self.cache:
if item['image_description'] == input_text:
item['caption'].append(generated_caption)
break
else:
self.cache.append({
'image_description': input_text,
'caption': [generated_caption]
})
return generated_caption
except Exception as e:
print(e)
return None
def _prompt(input_text="A man walking alone in the road"):
if input_text is None:
raise Exception("Enter a valid input text to generate a valid prompt")
return f"""
Convert the given image description to a appropriate metaphoric caption
Description: {input_text}
Caption:
""".strip()
@staticmethod
def get_trainable_parameters(model):
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
return f"trainable_params: {trainable_params} || all_params: {all_param} || Percentage of trainable params: {100*trainable_params / all_param}"
def __repr__(self):
return f"""
Base Model Name: {self.MODEL_NAME}
PEFT Model Name: {self.peft_model_name}
Using PEFT Finetuned Model: {self.use_finetuned}
Model: {self.model}
------------------------------------------------------------
{Social_Media_Captioner.get_trainable_parameters(self.model)}
"""
class Captions:
def __init__(self, use_finetuned_LLM: bool=True, temp_LLM=0.1):
self.image_to_text = Image2Text()
self.LLM = Social_Media_Captioner(use_finetuned_LLM, temp_LLM)
def generate_captions(
self,
image,
image_url=None,
max_length_GIT=50,
temperature_GIT=0.1,
use_sample_image_GIT=False,
use_cached_LLM=True,
cache_generation_LLM=True
):
if image_url:
image_description = self.image_to_text.image_description(image_url, max_length=max_length_GIT, temperature=temperature_GIT, use_sample_image=use_sample_image_GIT)
else:
image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT)
captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM)
return captions
caption_generator = Captions()
import gradio as gr
def setup(image):
return caption_generator.generate_captions(image = image)
iface = gr.Interface(
fn=setup,
inputs=gr.inputs.Image(type="pil", label="Upload Image"),
outputs=gr.outputs.Textbox(label="Caption")
)
iface.launch()