Spaces:
Runtime error
Runtime error
Initial commit
Browse files- app.py +296 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import traceback
|
6 |
+
|
7 |
+
class Image2Text:
|
8 |
+
def __init__(self):
|
9 |
+
# Load the GIT coco model
|
10 |
+
preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
11 |
+
model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
12 |
+
|
13 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
self.preprocessor = preprocessor_git_large_coco
|
16 |
+
self.model = model_git_large_coco
|
17 |
+
self.model.to(self.device)
|
18 |
+
|
19 |
+
|
20 |
+
def image_description(
|
21 |
+
self,
|
22 |
+
image_url,
|
23 |
+
max_length=50,
|
24 |
+
temperature=0.1,
|
25 |
+
use_sample_image=False,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Generate captions for the given image.
|
29 |
+
|
30 |
+
-----
|
31 |
+
Parameters
|
32 |
+
image_url: Image URL
|
33 |
+
The image to generate captions for.
|
34 |
+
max_length: int
|
35 |
+
The max length of the generated descriptions.
|
36 |
+
|
37 |
+
-----
|
38 |
+
Returns
|
39 |
+
str
|
40 |
+
The generated image description.
|
41 |
+
"""
|
42 |
+
caption_git_large_coco = ""
|
43 |
+
|
44 |
+
if use_sample_image:
|
45 |
+
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
46 |
+
|
47 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
48 |
+
|
49 |
+
# Generate captions for the image using the GIT coco model
|
50 |
+
try:
|
51 |
+
caption_git_large_coco = self._generate_description(image, max_length, False).strip()
|
52 |
+
return caption_git_large_coco
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
print(e)
|
56 |
+
traceback.print_exc()
|
57 |
+
|
58 |
+
|
59 |
+
def _generate_description(
|
60 |
+
self,
|
61 |
+
image,
|
62 |
+
max_length=50,
|
63 |
+
use_float_16=False,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
Generate captions for the given image.
|
67 |
+
|
68 |
+
-----
|
69 |
+
Parameters
|
70 |
+
image: PIL.Image
|
71 |
+
The image to generate captions for.
|
72 |
+
max_length: int
|
73 |
+
The max length of the generated descriptions.
|
74 |
+
use_float_16: bool
|
75 |
+
Whether to use float16 precision. This can speed up inference, but may lead to worse results.
|
76 |
+
|
77 |
+
-----
|
78 |
+
Returns
|
79 |
+
str
|
80 |
+
The generated caption.
|
81 |
+
"""
|
82 |
+
# inputs = preprocessor(image, return_tensors="pt").to(device)
|
83 |
+
pixel_values = self.preprocessor(images=image, return_tensors="pt").pixel_values.to(self.device)
|
84 |
+
generated_ids = self.model.generate(
|
85 |
+
pixel_values=pixel_values,
|
86 |
+
max_length=max_length,
|
87 |
+
)
|
88 |
+
generated_caption = self.preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
89 |
+
return generated_caption
|
90 |
+
|
91 |
+
import json
|
92 |
+
import os
|
93 |
+
from pprint import pprint
|
94 |
+
|
95 |
+
import bitsandbytes as bnb
|
96 |
+
import pandas as pd
|
97 |
+
|
98 |
+
import torch
|
99 |
+
import torch.nn as nn
|
100 |
+
import transformers
|
101 |
+
from datasets import load_dataset
|
102 |
+
from huggingface_hub import notebook_login
|
103 |
+
from peft import (
|
104 |
+
LoraConfig ,
|
105 |
+
PeftConfig ,
|
106 |
+
PeftModel ,
|
107 |
+
get_peft_model ,
|
108 |
+
prepare_model_for_kbit_training,
|
109 |
+
)
|
110 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
111 |
+
from peft import LoraConfig, get_peft_model
|
112 |
+
|
113 |
+
|
114 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
115 |
+
|
116 |
+
class Social_Media_Captioner:
|
117 |
+
def __init__(self, use_finetuned: bool=True, temp=0.1):
|
118 |
+
self.use_finetuned = use_finetuned
|
119 |
+
self.MODEL_NAME = "vilsonrodrigues/falcon-7b-instruct-sharded"
|
120 |
+
self.peft_model_name = "ayush-vatsal/caption_qlora_finetune"
|
121 |
+
self.model_loaded = False
|
122 |
+
self.device = "cuda:0"
|
123 |
+
|
124 |
+
self._load_model()
|
125 |
+
|
126 |
+
self.generation_config = self.model.generation_config
|
127 |
+
self.generation_config.max_new_tokens = 50
|
128 |
+
self.generation_config.temperature = temp
|
129 |
+
self.generation_config.top_p = 0.7
|
130 |
+
self.generation_config.num_return_sequences = 1
|
131 |
+
self.generation_config.pad_token_id = self.tokenizer.eos_token_id
|
132 |
+
self.generation_config.eos_token_id = self.tokenizer.eos_token_id
|
133 |
+
|
134 |
+
self.cache: list[dict] = [] # [{"image_decription": "A man", "caption": ["A man"]}]
|
135 |
+
|
136 |
+
|
137 |
+
def _load_model(self):
|
138 |
+
try:
|
139 |
+
self.bnb_config = BitsAndBytesConfig(
|
140 |
+
load_in_4bit = True,
|
141 |
+
bnb_4bit_use_double_quant = True,
|
142 |
+
bnb_4bit_quant_type= "nf4",
|
143 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
144 |
+
)
|
145 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
146 |
+
self.MODEL_NAME,
|
147 |
+
device_map = "auto",
|
148 |
+
trust_remote_code = True,
|
149 |
+
quantization_config = self.bnb_config
|
150 |
+
)
|
151 |
+
|
152 |
+
# Defining the tokenizers
|
153 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
|
154 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
155 |
+
|
156 |
+
if self.use_finetuned:
|
157 |
+
# LORA Config Model
|
158 |
+
self.lora_config = LoraConfig(
|
159 |
+
r=16,
|
160 |
+
lora_alpha=32,
|
161 |
+
target_modules=["query_key_value"],
|
162 |
+
lora_dropout=0.05,
|
163 |
+
bias="none",
|
164 |
+
task_type="CAUSAL_LM"
|
165 |
+
)
|
166 |
+
self.model = get_peft_model(self.model, self.lora_config)
|
167 |
+
|
168 |
+
# Fitting the adapters
|
169 |
+
self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
|
170 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
171 |
+
self.peft_config.base_model_name_or_path,
|
172 |
+
return_dict = True,
|
173 |
+
quantization_config = self.bnb_config,
|
174 |
+
device_map= "auto",
|
175 |
+
trust_remote_code = True
|
176 |
+
)
|
177 |
+
self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)
|
178 |
+
|
179 |
+
# Defining the tokenizers
|
180 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
|
181 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
182 |
+
|
183 |
+
self.model_loaded = True
|
184 |
+
print("Model Loaded successfully")
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
print(e)
|
188 |
+
self.model_loaded = False
|
189 |
+
|
190 |
+
|
191 |
+
def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
|
192 |
+
if not self.model_loaded:
|
193 |
+
raise Exception("Model not loaded")
|
194 |
+
|
195 |
+
try:
|
196 |
+
prompt = Social_Media_Captioner._prompt(input_text)
|
197 |
+
if use_cached:
|
198 |
+
for item in self.cache:
|
199 |
+
if item['image_description'] == input_text:
|
200 |
+
return item['caption']
|
201 |
+
|
202 |
+
encoding = self.tokenizer(prompt, return_tensors = "pt").to(self.device)
|
203 |
+
with torch.inference_mode():
|
204 |
+
outputs = self.model.generate(
|
205 |
+
input_ids = encoding.input_ids,
|
206 |
+
attention_mask = encoding.attention_mask,
|
207 |
+
generation_config = self.generation_config
|
208 |
+
)
|
209 |
+
generated_caption = (self.tokenizer.decode(outputs[0], skip_special_tokens=True).split('Caption: "')[-1]).split('"')[0]
|
210 |
+
|
211 |
+
if cache_generation:
|
212 |
+
for item in self.cache:
|
213 |
+
if item['image_description'] == input_text:
|
214 |
+
item['caption'].append(generated_caption)
|
215 |
+
break
|
216 |
+
else:
|
217 |
+
self.cache.append({
|
218 |
+
'image_description': input_text,
|
219 |
+
'caption': [generated_caption]
|
220 |
+
})
|
221 |
+
|
222 |
+
return generated_caption
|
223 |
+
except Exception as e:
|
224 |
+
print(e)
|
225 |
+
return None
|
226 |
+
|
227 |
+
|
228 |
+
def _prompt(input_text="A man walking alone in the road"):
|
229 |
+
if input_text is None:
|
230 |
+
raise Exception("Enter a valid input text to generate a valid prompt")
|
231 |
+
|
232 |
+
return f"""
|
233 |
+
Convert the given image description to a appropriate metaphoric caption
|
234 |
+
Description: {input_text}
|
235 |
+
Caption:
|
236 |
+
""".strip()
|
237 |
+
|
238 |
+
@staticmethod
|
239 |
+
def get_trainable_parameters(model):
|
240 |
+
trainable_params = 0
|
241 |
+
all_param = 0
|
242 |
+
for _, param in model.named_parameters():
|
243 |
+
all_param += param.numel()
|
244 |
+
if param.requires_grad:
|
245 |
+
trainable_params += param.numel()
|
246 |
+
return f"trainable_params: {trainable_params} || all_params: {all_param} || Percentage of trainable params: {100*trainable_params / all_param}"
|
247 |
+
|
248 |
+
|
249 |
+
def __repr__(self):
|
250 |
+
return f"""
|
251 |
+
Base Model Name: {self.MODEL_NAME}
|
252 |
+
PEFT Model Name: {self.peft_model_name}
|
253 |
+
Using PEFT Finetuned Model: {self.use_finetuned}
|
254 |
+
Model: {self.model}
|
255 |
+
|
256 |
+
------------------------------------------------------------
|
257 |
+
|
258 |
+
{Social_Media_Captioner.get_trainable_parameters(self.model)}
|
259 |
+
"""
|
260 |
+
|
261 |
+
class Captions:
|
262 |
+
def __init__(self, use_finetuned_LLM: bool=True, temp_LLM=0.1):
|
263 |
+
self.image_to_text = Image2Text()
|
264 |
+
self.LLM = Social_Media_Captioner(use_finetuned_LLM, temp_LLM)
|
265 |
+
|
266 |
+
def generate_captions(
|
267 |
+
self,
|
268 |
+
image,
|
269 |
+
image_url=None,
|
270 |
+
max_length_GIT=50,
|
271 |
+
temperature_GIT=0.1,
|
272 |
+
use_sample_image_GIT=False,
|
273 |
+
use_cached_LLM=True,
|
274 |
+
cache_generation_LLM=True
|
275 |
+
):
|
276 |
+
if image_url:
|
277 |
+
image_description = self.image_to_text.image_description(image_url, max_length=max_length_GIT, temperature=temperature_GIT, use_sample_image=use_sample_image_GIT)
|
278 |
+
else:
|
279 |
+
image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT)
|
280 |
+
captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM)
|
281 |
+
return captions
|
282 |
+
|
283 |
+
caption_generator = Captions()
|
284 |
+
|
285 |
+
import gradio as gr
|
286 |
+
|
287 |
+
def setup(image):
|
288 |
+
return caption_generator.generate_captions(image = image)
|
289 |
+
|
290 |
+
iface = gr.Interface(
|
291 |
+
fn=setup,
|
292 |
+
inputs=gr.inputs.Image(type="pil", label="Upload Image"),
|
293 |
+
outputs=gr.outputs.Textbox(label="Caption")
|
294 |
+
)
|
295 |
+
|
296 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio==3.36.0
|