File size: 19,538 Bytes
fa90792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
from typing import Iterator, List, Optional, Union
from collections import Counter
import logging
from operator import itemgetter
import random

import numpy as np

from torch.utils.data import DistributedSampler
from torch.utils.data.sampler import Sampler

LOGGER = logging.getLogger(__name__)

from torch.utils.data import Dataset, Sampler


class DatasetFromSampler(Dataset):
    """Dataset to create indexes from `Sampler`.
    Args:
        sampler: PyTorch sampler
    """

    def __init__(self, sampler: Sampler):
        """Initialisation for DatasetFromSampler."""
        self.sampler = sampler
        self.sampler_list = None

    def __getitem__(self, index: int):
        """Gets element of the dataset.
        Args:
            index: index of the element in the dataset
        Returns:
            Single element by index
        """
        if self.sampler_list is None:
            self.sampler_list = list(self.sampler)
        return self.sampler_list[index]

    def __len__(self) -> int:
        """
        Returns:
            int: length of the dataset
        """
        return len(self.sampler)


class BalanceClassSampler(Sampler):
    """Allows you to create stratified sample on unbalanced classes.

    Args:
        labels: list of class label for each elem in the dataset
        mode: Strategy to balance classes.
            Must be one of [downsampling, upsampling]

    Python API examples:

    .. code-block:: python

        import os
        from torch import nn, optim
        from torch.utils.data import DataLoader
        from catalyst import dl
        from catalyst.data import ToTensor, BalanceClassSampler
        from catalyst.contrib.datasets import MNIST

        train_data = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
        train_labels = train_data.targets.cpu().numpy().tolist()
        train_sampler = BalanceClassSampler(train_labels, mode=5000)
        valid_data = MNIST(os.getcwd(), train=False)

        loaders = {
            "train": DataLoader(train_data, sampler=train_sampler, batch_size=32),
            "valid": DataLoader(valid_data, batch_size=32),
        }

        model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.02)

        runner = dl.SupervisedRunner()
        # model training
        runner.train(
            model=model,
            criterion=criterion,
            optimizer=optimizer,
            loaders=loaders,
            num_epochs=1,
            logdir="./logs",
            valid_loader="valid",
            valid_metric="loss",
            minimize_valid_metric=True,
            verbose=True,
        )
    """

    def __init__(self, labels: List[int], mode: Union[str, int] = "downsampling"):
        """Sampler initialisation."""
        super().__init__(labels)

        labels = np.array(labels)
        samples_per_class = {label: (labels == label).sum() for label in set(labels)}

        self.lbl2idx = {
            label: np.arange(len(labels))[labels == label].tolist()
            for label in set(labels)
        }

        if isinstance(mode, str):
            assert mode in ["downsampling", "upsampling"]

        if isinstance(mode, int) or mode == "upsampling":
            samples_per_class = (
                mode if isinstance(mode, int) else max(samples_per_class.values())
            )
        else:
            samples_per_class = min(samples_per_class.values())

        self.labels = labels
        self.samples_per_class = samples_per_class
        self.length = self.samples_per_class * len(set(labels))

    def __iter__(self) -> Iterator[int]:
        """
        Returns:
            iterator of indices of stratified sample
        """
        indices = []
        for key in sorted(self.lbl2idx):
            replace_flag = self.samples_per_class > len(self.lbl2idx[key])
            indices += np.random.choice(
                self.lbl2idx[key], self.samples_per_class, replace=replace_flag
            ).tolist()
        assert len(indices) == self.length
        np.random.shuffle(indices)

        return iter(indices)

    def __len__(self) -> int:
        """
        Returns:
             length of result sample
        """
        return self.length


class BatchBalanceClassSampler(Sampler):
    """
    This kind of sampler can be used for both metric learning and classification task.

    BatchSampler with the given strategy for the C unique classes dataset:
    - Selection `num_classes` of C classes for each batch
    - Selection `num_samples` instances for each class in the batch
    The epoch ends after `num_batches`.
    So, the batch sise is `num_classes` * `num_samples`.

    One of the purposes of this sampler is to be used for
    forming triplets and pos/neg pairs inside the batch.
    To guarante existance of these pairs in the batch,
    `num_classes` and `num_samples` should be > 1. (1)

    This type of sampling can be found in the classical paper of Person Re-Id,
    where P (`num_classes`) equals 32 and K (`num_samples`) equals 4:
    `In Defense of the Triplet Loss for Person Re-Identification`_.

    Args:
        labels: list of classes labeles for each elem in the dataset
        num_classes: number of classes in a batch, should be > 1
        num_samples: number of instances of each class in a batch, should be > 1
        num_batches: number of batches in epoch
            (default = len(labels) // (num_classes * num_samples))

    .. _In Defense of the Triplet Loss for Person Re-Identification:
        https://arxiv.org/abs/1703.07737

    Python API examples:

    .. code-block:: python

        import os
        from torch import nn, optim
        from torch.utils.data import DataLoader
        from catalyst import dl
        from catalyst.data import ToTensor, BatchBalanceClassSampler
        from catalyst.contrib.datasets import MNIST

        train_data = MNIST(os.getcwd(), train=True, download=True)
        train_labels = train_data.targets.cpu().numpy().tolist()
        train_sampler = BatchBalanceClassSampler(
            train_labels, num_classes=10, num_samples=4)
        valid_data = MNIST(os.getcwd(), train=False)

        loaders = {
            "train": DataLoader(train_data, batch_sampler=train_sampler),
            "valid": DataLoader(valid_data, batch_size=32),
        }

        model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.02)

        runner = dl.SupervisedRunner()
        # model training
        runner.train(
            model=model,
            criterion=criterion,
            optimizer=optimizer,
            loaders=loaders,
            num_epochs=1,
            logdir="./logs",
            valid_loader="valid",
            valid_metric="loss",
            minimize_valid_metric=True,
            verbose=True,
        )
    """

    def __init__(
        self,
        labels: Union[List[int], np.ndarray],
        num_classes: int,
        num_samples: int,
        num_batches: int = None,
    ):
        """Sampler initialisation."""
        super().__init__(labels)
        classes = set(labels)

        assert isinstance(num_classes, int) and isinstance(num_samples, int)
        assert (1 < num_classes <= len(classes)) and (1 < num_samples)
        assert all(
            n > 1 for n in Counter(labels).values()
        ), "Each class shoud contain at least 2 instances to fit (1)"

        labels = np.array(labels)
        self._labels = list(set(labels.tolist()))
        self._num_classes = num_classes
        self._num_samples = num_samples
        self._batch_size = self._num_classes * self._num_samples
        self._num_batches = num_batches or len(labels) // self._batch_size
        self.lbl2idx = {
            label: np.arange(len(labels))[labels == label].tolist()
            for label in set(labels)
        }

    @property
    def batch_size(self) -> int:
        """
        Returns:
            this value should be used in DataLoader as batch size
        """
        return self._batch_size

    @property
    def batches_in_epoch(self) -> int:
        """
        Returns:
            number of batches in an epoch
        """
        return self._num_batches

    def __len__(self) -> int:
        """
        Returns:
            number of samples in an epoch
        """
        return self._num_batches  # * self._batch_size

    def __iter__(self) -> Iterator[int]:
        """
        Returns:
            indeces for sampling dataset elems during an epoch
        """
        indices = []
        for _ in range(self._num_batches):
            batch_indices = []
            classes_for_batch = random.sample(self._labels, self._num_classes)
            while self._num_classes != len(set(classes_for_batch)):
                classes_for_batch = random.sample(self._labels, self._num_classes)
            for cls_id in classes_for_batch:
                replace_flag = self._num_samples > len(self.lbl2idx[cls_id])
                batch_indices += np.random.choice(
                    self.lbl2idx[cls_id], self._num_samples, replace=replace_flag
                ).tolist()
            indices.append(batch_indices)
        return iter(indices)


class DynamicBalanceClassSampler(Sampler):
    """
    This kind of sampler can be used for classification tasks with significant
    class imbalance.

    The idea of this sampler that we start with the original class distribution
    and gradually move to uniform class distribution like with downsampling.

    Let's define :math: D_i = #C_i/ #C_min where :math: #C_i is a size of class
    i and :math: #C_min is a size of the rarest class, so :math: D_i define
    class distribution. Also define :math: g(n_epoch) is a exponential
    scheduler. On each epoch current :math: D_i  calculated as
    :math: current D_i  = D_i ^ g(n_epoch),
    after this data samples according this distribution.

    Notes:
         In the end of the training, epochs will contain only
         min_size_class * n_classes examples. So, possible it will not
         necessary to do validation on each epoch. For this reason use
         ControlFlowCallback.

    Examples:

        >>> import torch
        >>> import numpy as np

        >>> from catalyst.data import DynamicBalanceClassSampler
        >>> from torch.utils import data

        >>> features = torch.Tensor(np.random.random((200, 100)))
        >>> labels = np.random.randint(0, 4, size=(200,))
        >>> sampler = DynamicBalanceClassSampler(labels)
        >>> labels = torch.LongTensor(labels)
        >>> dataset = data.TensorDataset(features, labels)
        >>> loader = data.dataloader.DataLoader(dataset, batch_size=8)

        >>> for batch in loader:
        >>>     b_features, b_labels = batch

    Sampler was inspired by https://arxiv.org/abs/1901.06783
    """

    def __init__(
        self,
        labels: List[Union[int, str]],
        exp_lambda: float = 0.9,
        start_epoch: int = 0,
        max_d: Optional[int] = None,
        mode: Union[str, int] = "downsampling",
        ignore_warning: bool = False,
    ):
        """
        Args:
            labels: list of labels for each elem in the dataset
            exp_lambda: exponent figure for schedule
            start_epoch: start epoch number, can be useful for multi-stage
            experiments
            max_d: if not None, limit on the difference between the most
            frequent and the rarest classes, heuristic
            mode: number of samples per class in the end of training. Must be
            "downsampling" or number. Before change it, make sure that you
            understand how does it work
            ignore_warning: ignore warning about min class size
        """
        assert isinstance(start_epoch, int)
        assert 0 < exp_lambda < 1, "exp_lambda must be in (0, 1)"
        super().__init__(labels)
        self.exp_lambda = exp_lambda
        if max_d is None:
            max_d = np.inf
        self.max_d = max_d
        self.epoch = start_epoch
        labels = np.array(labels)
        samples_per_class = Counter(labels)
        self.min_class_size = min(samples_per_class.values())

        if self.min_class_size < 100 and not ignore_warning:
            LOGGER.warning(
                f"the smallest class contains only"
                f" {self.min_class_size} examples. At the end of"
                f" training, epochs will contain only"
                f" {self.min_class_size * len(samples_per_class)}"
                f" examples"
            )

        self.original_d = {
            key: value / self.min_class_size for key, value in samples_per_class.items()
        }
        self.label2idxes = {
            label: np.arange(len(labels))[labels == label].tolist()
            for label in set(labels)
        }

        if isinstance(mode, int):
            self.min_class_size = mode
        else:
            assert mode == "downsampling"

        self.labels = labels
        self._update()

    def _update(self) -> None:
        """Update d coefficients."""
        current_d = {
            key: min(value ** self._exp_scheduler(), self.max_d)
            for key, value in self.original_d.items()
        }
        samples_per_classes = {
            key: int(value * self.min_class_size) for key, value in current_d.items()
        }
        self.samples_per_classes = samples_per_classes
        self.length = np.sum(list(samples_per_classes.values()))
        self.epoch += 1

    def _exp_scheduler(self) -> float:
        return self.exp_lambda**self.epoch

    def __iter__(self) -> Iterator[int]:
        """
        Returns:
            iterator of indices of stratified sample
        """
        indices = []
        for key in sorted(self.label2idxes):
            samples_per_class = self.samples_per_classes[key]
            replace_flag = samples_per_class > len(self.label2idxes[key])
            indices += np.random.choice(
                self.label2idxes[key], samples_per_class, replace=replace_flag
            ).tolist()
        assert len(indices) == self.length
        np.random.shuffle(indices)
        self._update()
        return iter(indices)

    def __len__(self) -> int:
        """
        Returns:
             length of result sample
        """
        return self.length


class MiniEpochSampler(Sampler):
    """
    Sampler iterates mini epochs from the dataset used by ``mini_epoch_len``.

    Args:
        data_len: Size of the dataset
        mini_epoch_len: Num samples from the dataset used in one
          mini epoch.
        drop_last: If ``True``, sampler will drop the last batches
          if its size would be less than ``batches_per_epoch``
        shuffle: one of  ``"always"``, ``"real_epoch"``, or `None``.
          The sampler will shuffle indices
          > "per_mini_epoch" - every mini epoch (every ``__iter__`` call)
          > "per_epoch" -- every real epoch
          > None -- don't shuffle

    Example:
        >>> MiniEpochSampler(len(dataset), mini_epoch_len=100)
        >>> MiniEpochSampler(len(dataset), mini_epoch_len=100, drop_last=True)
        >>> MiniEpochSampler(len(dataset), mini_epoch_len=100,
        >>>     shuffle="per_epoch")
    """

    def __init__(
        self,
        data_len: int,
        mini_epoch_len: int,
        drop_last: bool = False,
        shuffle: str = None,
    ):
        """Sampler initialisation."""
        super().__init__(None)

        self.data_len = int(data_len)
        self.mini_epoch_len = int(mini_epoch_len)

        self.steps = int(data_len / self.mini_epoch_len)
        self.state_i = 0

        has_reminder = data_len - self.steps * mini_epoch_len > 0
        if self.steps == 0:
            self.divider = 1
        elif has_reminder and not drop_last:
            self.divider = self.steps + 1
        else:
            self.divider = self.steps

        self._indices = np.arange(self.data_len)
        self.indices = self._indices
        self.end_pointer = max(self.data_len, self.mini_epoch_len)

        if not (shuffle is None or shuffle in ["per_mini_epoch", "per_epoch"]):
            raise ValueError(
                "Shuffle must be one of ['per_mini_epoch', 'per_epoch']. "
                + f"Got {shuffle}"
            )
        self.shuffle_type = shuffle

    def shuffle(self) -> None:
        """Shuffle sampler indices."""
        if self.shuffle_type == "per_mini_epoch" or (
            self.shuffle_type == "per_epoch" and self.state_i == 0
        ):
            if self.data_len >= self.mini_epoch_len:
                self.indices = self._indices
                np.random.shuffle(self.indices)
            else:
                self.indices = np.random.choice(
                    self._indices, self.mini_epoch_len, replace=True
                )

    def __iter__(self) -> Iterator[int]:
        """Iterate over sampler.

        Returns:
            python iterator
        """
        self.state_i = self.state_i % self.divider
        self.shuffle()

        start = self.state_i * self.mini_epoch_len
        stop = (
            self.end_pointer
            if (self.state_i == self.steps)
            else (self.state_i + 1) * self.mini_epoch_len
        )
        indices = self.indices[start:stop].tolist()

        self.state_i += 1
        return iter(indices)

    def __len__(self) -> int:
        """
        Returns:
            int: length of the mini-epoch
        """
        return self.mini_epoch_len


class DistributedSamplerWrapper(DistributedSampler):
    """
    Wrapper over `Sampler` for distributed training.
    Allows you to use any sampler in distributed mode.

    It is especially useful in conjunction with
    `torch.nn.parallel.DistributedDataParallel`. In such case, each
    process can pass a DistributedSamplerWrapper instance as a DataLoader
    sampler, and load a subset of subsampled data of the original dataset
    that is exclusive to it.

    .. note::
        Sampler is assumed to be of constant size.
    """

    def __init__(
        self,
        sampler,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        shuffle: bool = True,
    ):
        """

        Args:
            sampler: Sampler used for subsampling
            num_replicas (int, optional): Number of processes participating in
                distributed training
            rank (int, optional): Rank of the current process
                within ``num_replicas``
            shuffle (bool, optional): If true (default),
                sampler will shuffle the indices
        """
        super(DistributedSamplerWrapper, self).__init__(
            DatasetFromSampler(sampler),
            num_replicas=num_replicas,
            rank=rank,
            shuffle=shuffle,
        )
        self.sampler = sampler

    def __iter__(self) -> Iterator[int]:
        """Iterate over sampler.

        Returns:
            python iterator
        """
        self.dataset = DatasetFromSampler(self.sampler)
        indexes_of_indexes = super().__iter__()
        subsampler_indexes = self.dataset
        return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))


__all__ = [
    "BalanceClassSampler",
    "BatchBalanceClassSampler",
    "DistributedSamplerWrapper",
    "DynamicBalanceClassSampler",
    "MiniEpochSampler",
]