Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,538 Bytes
fa90792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
from typing import Iterator, List, Optional, Union
from collections import Counter
import logging
from operator import itemgetter
import random
import numpy as np
from torch.utils.data import DistributedSampler
from torch.utils.data.sampler import Sampler
LOGGER = logging.getLogger(__name__)
from torch.utils.data import Dataset, Sampler
class DatasetFromSampler(Dataset):
"""Dataset to create indexes from `Sampler`.
Args:
sampler: PyTorch sampler
"""
def __init__(self, sampler: Sampler):
"""Initialisation for DatasetFromSampler."""
self.sampler = sampler
self.sampler_list = None
def __getitem__(self, index: int):
"""Gets element of the dataset.
Args:
index: index of the element in the dataset
Returns:
Single element by index
"""
if self.sampler_list is None:
self.sampler_list = list(self.sampler)
return self.sampler_list[index]
def __len__(self) -> int:
"""
Returns:
int: length of the dataset
"""
return len(self.sampler)
class BalanceClassSampler(Sampler):
"""Allows you to create stratified sample on unbalanced classes.
Args:
labels: list of class label for each elem in the dataset
mode: Strategy to balance classes.
Must be one of [downsampling, upsampling]
Python API examples:
.. code-block:: python
import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data import ToTensor, BalanceClassSampler
from catalyst.contrib.datasets import MNIST
train_data = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
train_labels = train_data.targets.cpu().numpy().tolist()
train_sampler = BalanceClassSampler(train_labels, mode=5000)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
"train": DataLoader(train_data, sampler=train_sampler, batch_size=32),
"valid": DataLoader(valid_data, batch_size=32),
}
model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
runner = dl.SupervisedRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
num_epochs=1,
logdir="./logs",
valid_loader="valid",
valid_metric="loss",
minimize_valid_metric=True,
verbose=True,
)
"""
def __init__(self, labels: List[int], mode: Union[str, int] = "downsampling"):
"""Sampler initialisation."""
super().__init__(labels)
labels = np.array(labels)
samples_per_class = {label: (labels == label).sum() for label in set(labels)}
self.lbl2idx = {
label: np.arange(len(labels))[labels == label].tolist()
for label in set(labels)
}
if isinstance(mode, str):
assert mode in ["downsampling", "upsampling"]
if isinstance(mode, int) or mode == "upsampling":
samples_per_class = (
mode if isinstance(mode, int) else max(samples_per_class.values())
)
else:
samples_per_class = min(samples_per_class.values())
self.labels = labels
self.samples_per_class = samples_per_class
self.length = self.samples_per_class * len(set(labels))
def __iter__(self) -> Iterator[int]:
"""
Returns:
iterator of indices of stratified sample
"""
indices = []
for key in sorted(self.lbl2idx):
replace_flag = self.samples_per_class > len(self.lbl2idx[key])
indices += np.random.choice(
self.lbl2idx[key], self.samples_per_class, replace=replace_flag
).tolist()
assert len(indices) == self.length
np.random.shuffle(indices)
return iter(indices)
def __len__(self) -> int:
"""
Returns:
length of result sample
"""
return self.length
class BatchBalanceClassSampler(Sampler):
"""
This kind of sampler can be used for both metric learning and classification task.
BatchSampler with the given strategy for the C unique classes dataset:
- Selection `num_classes` of C classes for each batch
- Selection `num_samples` instances for each class in the batch
The epoch ends after `num_batches`.
So, the batch sise is `num_classes` * `num_samples`.
One of the purposes of this sampler is to be used for
forming triplets and pos/neg pairs inside the batch.
To guarante existance of these pairs in the batch,
`num_classes` and `num_samples` should be > 1. (1)
This type of sampling can be found in the classical paper of Person Re-Id,
where P (`num_classes`) equals 32 and K (`num_samples`) equals 4:
`In Defense of the Triplet Loss for Person Re-Identification`_.
Args:
labels: list of classes labeles for each elem in the dataset
num_classes: number of classes in a batch, should be > 1
num_samples: number of instances of each class in a batch, should be > 1
num_batches: number of batches in epoch
(default = len(labels) // (num_classes * num_samples))
.. _In Defense of the Triplet Loss for Person Re-Identification:
https://arxiv.org/abs/1703.07737
Python API examples:
.. code-block:: python
import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.data import ToTensor, BatchBalanceClassSampler
from catalyst.contrib.datasets import MNIST
train_data = MNIST(os.getcwd(), train=True, download=True)
train_labels = train_data.targets.cpu().numpy().tolist()
train_sampler = BatchBalanceClassSampler(
train_labels, num_classes=10, num_samples=4)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
"train": DataLoader(train_data, batch_sampler=train_sampler),
"valid": DataLoader(valid_data, batch_size=32),
}
model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
runner = dl.SupervisedRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
num_epochs=1,
logdir="./logs",
valid_loader="valid",
valid_metric="loss",
minimize_valid_metric=True,
verbose=True,
)
"""
def __init__(
self,
labels: Union[List[int], np.ndarray],
num_classes: int,
num_samples: int,
num_batches: int = None,
):
"""Sampler initialisation."""
super().__init__(labels)
classes = set(labels)
assert isinstance(num_classes, int) and isinstance(num_samples, int)
assert (1 < num_classes <= len(classes)) and (1 < num_samples)
assert all(
n > 1 for n in Counter(labels).values()
), "Each class shoud contain at least 2 instances to fit (1)"
labels = np.array(labels)
self._labels = list(set(labels.tolist()))
self._num_classes = num_classes
self._num_samples = num_samples
self._batch_size = self._num_classes * self._num_samples
self._num_batches = num_batches or len(labels) // self._batch_size
self.lbl2idx = {
label: np.arange(len(labels))[labels == label].tolist()
for label in set(labels)
}
@property
def batch_size(self) -> int:
"""
Returns:
this value should be used in DataLoader as batch size
"""
return self._batch_size
@property
def batches_in_epoch(self) -> int:
"""
Returns:
number of batches in an epoch
"""
return self._num_batches
def __len__(self) -> int:
"""
Returns:
number of samples in an epoch
"""
return self._num_batches # * self._batch_size
def __iter__(self) -> Iterator[int]:
"""
Returns:
indeces for sampling dataset elems during an epoch
"""
indices = []
for _ in range(self._num_batches):
batch_indices = []
classes_for_batch = random.sample(self._labels, self._num_classes)
while self._num_classes != len(set(classes_for_batch)):
classes_for_batch = random.sample(self._labels, self._num_classes)
for cls_id in classes_for_batch:
replace_flag = self._num_samples > len(self.lbl2idx[cls_id])
batch_indices += np.random.choice(
self.lbl2idx[cls_id], self._num_samples, replace=replace_flag
).tolist()
indices.append(batch_indices)
return iter(indices)
class DynamicBalanceClassSampler(Sampler):
"""
This kind of sampler can be used for classification tasks with significant
class imbalance.
The idea of this sampler that we start with the original class distribution
and gradually move to uniform class distribution like with downsampling.
Let's define :math: D_i = #C_i/ #C_min where :math: #C_i is a size of class
i and :math: #C_min is a size of the rarest class, so :math: D_i define
class distribution. Also define :math: g(n_epoch) is a exponential
scheduler. On each epoch current :math: D_i calculated as
:math: current D_i = D_i ^ g(n_epoch),
after this data samples according this distribution.
Notes:
In the end of the training, epochs will contain only
min_size_class * n_classes examples. So, possible it will not
necessary to do validation on each epoch. For this reason use
ControlFlowCallback.
Examples:
>>> import torch
>>> import numpy as np
>>> from catalyst.data import DynamicBalanceClassSampler
>>> from torch.utils import data
>>> features = torch.Tensor(np.random.random((200, 100)))
>>> labels = np.random.randint(0, 4, size=(200,))
>>> sampler = DynamicBalanceClassSampler(labels)
>>> labels = torch.LongTensor(labels)
>>> dataset = data.TensorDataset(features, labels)
>>> loader = data.dataloader.DataLoader(dataset, batch_size=8)
>>> for batch in loader:
>>> b_features, b_labels = batch
Sampler was inspired by https://arxiv.org/abs/1901.06783
"""
def __init__(
self,
labels: List[Union[int, str]],
exp_lambda: float = 0.9,
start_epoch: int = 0,
max_d: Optional[int] = None,
mode: Union[str, int] = "downsampling",
ignore_warning: bool = False,
):
"""
Args:
labels: list of labels for each elem in the dataset
exp_lambda: exponent figure for schedule
start_epoch: start epoch number, can be useful for multi-stage
experiments
max_d: if not None, limit on the difference between the most
frequent and the rarest classes, heuristic
mode: number of samples per class in the end of training. Must be
"downsampling" or number. Before change it, make sure that you
understand how does it work
ignore_warning: ignore warning about min class size
"""
assert isinstance(start_epoch, int)
assert 0 < exp_lambda < 1, "exp_lambda must be in (0, 1)"
super().__init__(labels)
self.exp_lambda = exp_lambda
if max_d is None:
max_d = np.inf
self.max_d = max_d
self.epoch = start_epoch
labels = np.array(labels)
samples_per_class = Counter(labels)
self.min_class_size = min(samples_per_class.values())
if self.min_class_size < 100 and not ignore_warning:
LOGGER.warning(
f"the smallest class contains only"
f" {self.min_class_size} examples. At the end of"
f" training, epochs will contain only"
f" {self.min_class_size * len(samples_per_class)}"
f" examples"
)
self.original_d = {
key: value / self.min_class_size for key, value in samples_per_class.items()
}
self.label2idxes = {
label: np.arange(len(labels))[labels == label].tolist()
for label in set(labels)
}
if isinstance(mode, int):
self.min_class_size = mode
else:
assert mode == "downsampling"
self.labels = labels
self._update()
def _update(self) -> None:
"""Update d coefficients."""
current_d = {
key: min(value ** self._exp_scheduler(), self.max_d)
for key, value in self.original_d.items()
}
samples_per_classes = {
key: int(value * self.min_class_size) for key, value in current_d.items()
}
self.samples_per_classes = samples_per_classes
self.length = np.sum(list(samples_per_classes.values()))
self.epoch += 1
def _exp_scheduler(self) -> float:
return self.exp_lambda**self.epoch
def __iter__(self) -> Iterator[int]:
"""
Returns:
iterator of indices of stratified sample
"""
indices = []
for key in sorted(self.label2idxes):
samples_per_class = self.samples_per_classes[key]
replace_flag = samples_per_class > len(self.label2idxes[key])
indices += np.random.choice(
self.label2idxes[key], samples_per_class, replace=replace_flag
).tolist()
assert len(indices) == self.length
np.random.shuffle(indices)
self._update()
return iter(indices)
def __len__(self) -> int:
"""
Returns:
length of result sample
"""
return self.length
class MiniEpochSampler(Sampler):
"""
Sampler iterates mini epochs from the dataset used by ``mini_epoch_len``.
Args:
data_len: Size of the dataset
mini_epoch_len: Num samples from the dataset used in one
mini epoch.
drop_last: If ``True``, sampler will drop the last batches
if its size would be less than ``batches_per_epoch``
shuffle: one of ``"always"``, ``"real_epoch"``, or `None``.
The sampler will shuffle indices
> "per_mini_epoch" - every mini epoch (every ``__iter__`` call)
> "per_epoch" -- every real epoch
> None -- don't shuffle
Example:
>>> MiniEpochSampler(len(dataset), mini_epoch_len=100)
>>> MiniEpochSampler(len(dataset), mini_epoch_len=100, drop_last=True)
>>> MiniEpochSampler(len(dataset), mini_epoch_len=100,
>>> shuffle="per_epoch")
"""
def __init__(
self,
data_len: int,
mini_epoch_len: int,
drop_last: bool = False,
shuffle: str = None,
):
"""Sampler initialisation."""
super().__init__(None)
self.data_len = int(data_len)
self.mini_epoch_len = int(mini_epoch_len)
self.steps = int(data_len / self.mini_epoch_len)
self.state_i = 0
has_reminder = data_len - self.steps * mini_epoch_len > 0
if self.steps == 0:
self.divider = 1
elif has_reminder and not drop_last:
self.divider = self.steps + 1
else:
self.divider = self.steps
self._indices = np.arange(self.data_len)
self.indices = self._indices
self.end_pointer = max(self.data_len, self.mini_epoch_len)
if not (shuffle is None or shuffle in ["per_mini_epoch", "per_epoch"]):
raise ValueError(
"Shuffle must be one of ['per_mini_epoch', 'per_epoch']. "
+ f"Got {shuffle}"
)
self.shuffle_type = shuffle
def shuffle(self) -> None:
"""Shuffle sampler indices."""
if self.shuffle_type == "per_mini_epoch" or (
self.shuffle_type == "per_epoch" and self.state_i == 0
):
if self.data_len >= self.mini_epoch_len:
self.indices = self._indices
np.random.shuffle(self.indices)
else:
self.indices = np.random.choice(
self._indices, self.mini_epoch_len, replace=True
)
def __iter__(self) -> Iterator[int]:
"""Iterate over sampler.
Returns:
python iterator
"""
self.state_i = self.state_i % self.divider
self.shuffle()
start = self.state_i * self.mini_epoch_len
stop = (
self.end_pointer
if (self.state_i == self.steps)
else (self.state_i + 1) * self.mini_epoch_len
)
indices = self.indices[start:stop].tolist()
self.state_i += 1
return iter(indices)
def __len__(self) -> int:
"""
Returns:
int: length of the mini-epoch
"""
return self.mini_epoch_len
class DistributedSamplerWrapper(DistributedSampler):
"""
Wrapper over `Sampler` for distributed training.
Allows you to use any sampler in distributed mode.
It is especially useful in conjunction with
`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSamplerWrapper instance as a DataLoader
sampler, and load a subset of subsampled data of the original dataset
that is exclusive to it.
.. note::
Sampler is assumed to be of constant size.
"""
def __init__(
self,
sampler,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
):
"""
Args:
sampler: Sampler used for subsampling
num_replicas (int, optional): Number of processes participating in
distributed training
rank (int, optional): Rank of the current process
within ``num_replicas``
shuffle (bool, optional): If true (default),
sampler will shuffle the indices
"""
super(DistributedSamplerWrapper, self).__init__(
DatasetFromSampler(sampler),
num_replicas=num_replicas,
rank=rank,
shuffle=shuffle,
)
self.sampler = sampler
def __iter__(self) -> Iterator[int]:
"""Iterate over sampler.
Returns:
python iterator
"""
self.dataset = DatasetFromSampler(self.sampler)
indexes_of_indexes = super().__iter__()
subsampler_indexes = self.dataset
return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))
__all__ = [
"BalanceClassSampler",
"BatchBalanceClassSampler",
"DistributedSamplerWrapper",
"DynamicBalanceClassSampler",
"MiniEpochSampler",
]
|