import os import json from langchain import OpenAI, PromptTemplate, LLMChain from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain.docstore.document import Document from langchain.chains.summarize import load_summarize_chain import gradio as gr #chargement des paramètres with open("parametres.json", "r") as p: params = json.load(p) taille_max = params["taille_max"] modele = params["modele"] summary_length = params["summary_length"] chunks_max = taille_max//4000 #définition du LLM llm = OpenAI(model_name = modele, max_tokens = summary_length, temperature=0, openai_api_key = os.environ['OpenaiKey']) #résumé d'un texte def summarize_text(text_to_summarize, llm): #préparation du texte text_splitter = CharacterTextSplitter(chunk_size=3000) texts = text_splitter.split_text(text_to_summarize) print(len(texts)) docs = [Document(page_content=t) for t in texts[:chunks_max]] print(len(docs)) #résumé prompt_template = """Write a summary of the following, as long as possible in your context maximum size, in the langage of the original text: {text} SUMMARY:""" summary_langage_prompt = PromptTemplate(template=prompt_template, input_variables=['text']) #summary_langage_prompt.format(taille=f"{summary_length}") chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=summary_langage_prompt, combine_prompt = summary_langage_prompt) steps = chain({"input_documents": docs}, return_only_outputs=True) print(len(steps['intermediate_steps'])) print(steps['intermediate_steps']) return steps['output_text'] # Lecture et résumé d'un fichier texte def summarize_uploaded_file(file): if not file.name.endswith('.txt'): return ("Le fichier doit être un fichier texte (.txt)") with open(file.name, "r", encoding = "latin-1") as f: text = f.read() summary = summarize_text(text, llm) return summary # Création de l'interface Gradio iface = gr.Interface( fn=summarize_uploaded_file, inputs="file", outputs=gr.outputs.Textbox(label="Résumé"), title="Long Text Summarizer", description=f"Résume un long fichier texte — jusqu'à {taille_max} tokens", allow_flagging = "never") # Lancer l'interface iface.launch()