Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
# Images | |
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', 'bus.jpg') | |
# Model | |
model_name ='fire_model.pt' # force_reload=True to update | |
if model_name: | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_name, force_reload=True) | |
else: | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
def yolo(im, size=640): | |
g = (size / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
results = model(im) # inference | |
results.render() # updates results.imgs with boxes and labels | |
return Image.fromarray(results.imgs[0]) | |
inputs = gr.inputs.Image(type='pil', label="Original Image") | |
outputs = gr.outputs.Image(type="pil", label="Output Image") | |
title = "YOLOv5" | |
description = "YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'> THis Demo is meant to detect specific models of fire extinguishers , trained on an artificially generated dataset from IFC MODEL with Blender" \ | |
"The aim is to simulate real world fire extinguishers as much possible in order for the object detector to recognizeit" \ | |
examples = [['23327.png'], ['download.jpg']] | |
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch( | |
debug=True) | |
# try again |