KingNish's picture
Create app.py
217892e verified
raw
history blame
4.5 kB
import PyPDF2
from openpyxl import load_workbook
from pptx import Presentation
import gradio as gr
import io
import docx2python
from huggingface_hub import InferenceClient
# Initialize the Mistral chat model
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
def read_document(file):
file_path = file.name # Get the file path from NamedString
file_extension = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f: # Open the file in binary read mode
file_content = f.read()
if file_extension == 'pdf':
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
content = ''
for page in range(len(pdf_reader.pages)):
content += pdf_reader.pages[page].extract_text()
return content
except Exception as e:
return f"Error reading PDF: {e}"
elif file_extension == 'xlsx':
try:
wb = load_workbook(io.BytesIO(file_content))
content = ''
for sheet in wb.worksheets:
for row in sheet.rows:
for cell in row:
content += str(cell.value) + ' '
return content
except Exception as e:
return f"Error reading XLSX: {e}"
elif file_extension == 'pptx':
try:
presentation = Presentation(io.BytesIO(file_content))
content = ''
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + ' '
return content
except Exception as e:
return f"Error reading PPTX: {e}"
elif file_extension == 'doc' or file_extension == 'docx':
try:
doc_result = docx2python.convert(io.BytesIO(file_content))
content = ''
for page in doc_result:
for paragraph in page:
if isinstance(paragraph, str):
content += paragraph + ' '
elif isinstance(paragraph, list):
for sub_paragraph in paragraph:
if isinstance(sub_paragraph, str):
content += sub_paragraph + ' '
return content
except Exception as e:
return f"Error reading DOC/DOCX: {e}"
else:
try:
content = file_content.decode('utf-8')
return content
except Exception as e:
return f"Error reading file: {e}"
def chat_document(file, question):
content = str(read_document(file))
if len(content) > 128000:
content = content[:128000]
# Define system prompt for the chat API
system_prompt = """
You are a helpful and informative assistant that can answer questions based on the content of documents.
You will receive the content of a document and a question about it.
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
"""
message = f"""[INST] [SYSTEM] {system_prompt}
Document Content: {content}
Question: {question}
Answer:"""
stream = client.text_generation(message, max_new_tokens=512, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Document Reader"):
iface1 = gr.Interface(
fn=read_document,
inputs=gr.File(label="Upload a Document"),
outputs=gr.Textbox(label="Document Content"),
title="Document Reader",
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
)
with gr.TabItem("Document Chat"):
iface2 = gr.Interface(
fn=chat_document,
inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
outputs=gr.Textbox(label="Answer"),
title="Document Chat",
description="Upload a document and ask questions about its content."
)
demo.launch()