File size: 14,499 Bytes
4a8ac8b
 
 
 
 
 
 
 
7e5261e
 
 
483e97a
7e5261e
 
196bddf
 
483e97a
196bddf
 
483e97a
 
7e5261e
 
5a8275a
7e5261e
5a8275a
14d257f
7e5261e
 
5a8275a
6cf979c
8d7d352
483e97a
6cf979c
 
483e97a
6cf979c
483e97a
8d7d352
483e97a
5a8275a
6cf979c
5a8275a
483e97a
6cf979c
06bea5a
7e5261e
483e97a
4a8ac8b
 
db07900
4a8ac8b
 
 
483e97a
4a8ac8b
7ea7941
4a8ac8b
 
8276bc3
7ea7941
 
4a8ac8b
8c8d4ad
7ea7941
 
 
4a8ac8b
 
 
 
 
 
 
 
483e97a
 
 
4a8ac8b
 
 
 
 
8276bc3
4a8ac8b
 
 
483e97a
7ea7941
c08168a
7ea7941
 
c938b2a
c08168a
483e97a
7ea7941
 
666a2c5
4a8ac8b
5a8275a
 
 
 
 
 
403cffd
5a8275a
 
483e97a
5a8275a
 
 
 
 
 
483e97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8275a
 
 
 
 
 
 
483e97a
 
 
5a8275a
 
 
 
 
483e97a
5a8275a
 
 
 
 
483e97a
5a8275a
 
 
 
 
 
 
 
 
983867e
5a8275a
 
483e97a
 
 
983867e
 
483e97a
c2fc75b
983867e
5a8275a
 
 
 
 
 
483e97a
04197d7
c3b2412
5a8275a
c3b2412
 
 
5a8275a
 
 
 
 
 
 
483e97a
5a8275a
 
 
 
 
04197d7
5a8275a
9bb6f16
 
 
483e97a
 
5a8275a
 
 
fed8b63
5a8275a
 
04197d7
5a8275a
 
 
483e97a
 
 
5a8275a
 
 
 
 
 
483e97a
5a8275a
 
 
9b6b2ca
 
 
 
 
 
483e97a
5a8275a
 
 
 
 
9b6b2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import cv2
from gradio_client import Client, file


def image_gen(prompt):
    client = Client("KingNish/Image-Gen-Pro")
    return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")


model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"

processor = LlavaProcessor.from_pretrained(model_id)

model = LlavaForConditionalGeneration.from_pretrained(model_id)
model.to("cpu")


def llava(message, history):
    if message["files"]:
        image = message["files"][0]
    else:
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]

    txt = message["text"]

    gr.Info("Analyzing image")
    image = Image.open(image).convert("RGB")
    prompt = f"<|im_start|>user <image>\n{txt}<|im_start|>assistant"

    inputs = processor(prompt, image, return_tensors="pt")
    return inputs


def extract_text_from_webpage(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup(["script", "style", "header", "footer"]):
        tag.extract()
    return soup.get_text(strip=True)


def search(query):
    term = query
    start = 0
    all_results = []
    max_chars_per_page = 8000
    with requests.Session() as session:
        resp = session.get(
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
            params={"q": term, "num": 3, "udm": 14},
            timeout=5,
            verify=None,
        )
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)
            link = link["href"]
            try:
                webpage = session.get(link, headers={
                    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
                                      timeout=5, verify=False)
                webpage.raise_for_status()
                visible_text = extract_text_from_webpage(webpage.text)
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException:
                all_results.append({"link": link, "text": None})
    return all_results


# Initialize inference clients for different models
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat")


# Define the main chat function
def respond(message, history):
    func_caller = []

    user_prompt = message
    # Handle image processing
    if message["files"]:
        inputs = llava(message, history)
        streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer
    else:
        functions_metadata = [
            {"type": "function", "function": {"name": "web_search", "description": "Search query on google",
                                              "parameters": {"type": "object", "properties": {
                                                  "query": {"type": "string", "description": "web search query"}},
                                                             "required": ["query"]}}},
            {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER",
                                              "parameters": {"type": "object", "properties": {
                                                  "prompt": {"type": "string", "description": "A detailed prompt"}},
                                                             "required": ["prompt"]}}},
            {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user",
                                              "parameters": {"type": "object", "properties": {
                                                  "query": {"type": "string",
                                                            "description": "image generation prompt"}},
                                                             "required": ["query"]}}},
            {"type": "function",
             "function": {"name": "image_qna", "description": "Answer question asked by user related to image",
                          "parameters": {"type": "object",
                                         "properties": {"query": {"type": "string", "description": "Question by user"}},
                                         "required": ["query"]}}},
        ]

        for msg in history:
            func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
            func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})

        message_text = message["text"]
        func_caller.append({"role": "user",
                            "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }}  </functioncall>  [USER] {message_text}'})

        response = client_gemma.chat_completion(func_caller, max_tokens=200)
        response = str(response)
        try:
            response = response[int(response.find("{")):int(response.rindex("</"))]
        except:
            response = response[int(response.find("{")):(int(response.rfind("}")) + 1)]
        response = response.replace("\\n", "")
        response = response.replace("\\'", "'")
        response = response.replace('\\"', '"')
        response = response.replace('\\', '')
        print(f"\n{response}")

        try:
            json_data = json.loads(str(response))
            if json_data["name"] == "web_search":
                query = json_data["arguments"]["query"]
                gr.Info("Searching Web")
                web_results = search(query)
                gr.Info("Extracting relevant Info")
                web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
                messages = f"<|im_start|>system\nYou are OpenCHAT mini a helpful assistant made by Nithish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
                for msg in history:
                    messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                    messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
                messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
                stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
                                                        details=True, return_full_text=False)
                output = ""
                for response in stream:
                    if not response.token.text == "hello":
                        output += response.token.text.replace("<|im_end|>", "")
                        yield output
            elif json_data["name"] == "image_generation":
                query = json_data["arguments"]["query"]
                gr.Info("Generating Image, Please wait 10 sec...")
                yield "Generating Image, Please wait 10 sec..."
                try:
                    client_sd3 = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
                    seed = random.randint(0, 999999)
                    negativeprompt = ""
                    image = client_sd3.text_to_image(query, negative_prompt=f"{seed},{negativeprompt}")
                    yield gr.Image(image)
                except:
                    image = image_gen(f"{str(query)}")
                    yield gr.Image(image[1])
            elif json_data["name"] == "image_qna":
                inputs = llava(message, history)
                streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
                generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

                thread = Thread(target=model.generate, kwargs=generation_kwargs)
                thread.start()

                buffer = ""
                for new_text in streamer:
                    buffer += new_text
                    yield buffer
            else:
                messages = f"<|im_start|>system\nYou are OpenGPT a Expert AI Chat bot made by Nithish. You answers users query like professional AI. You are also Mastered in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user.<|im_end|>"
                for msg in history:
                    messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                    messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
                messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
                stream = client_yi.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
                                                   details=True, return_full_text=False)
                output = ""
                for response in stream:
                    if not response.token.text == "<|endoftext|>":
                        output += response.token.text.replace("<|im_end|>", "")
                        yield output
        except:
            messages = f"<|start_header_id|>system\nYou are OpenGPT a helpful AI CHAT BOT made by Nithish. You answers users query like professional . You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user.<|end_header_id|>"
            for msg in history:
                messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
                messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
            messages += f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
            stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
                                                  details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "<|eot_id|>":
                    output += response.token.text
                    yield output


# Create the Gradio interface
demo = gr.ChatInterface(
    fn=respond,
    chatbot=gr.Chatbot(
        show_copy_button=True,
        likeable=True,
        layout="custom",
        chatbot_class="custom-chatbot",
    ),
    description="# OpenGPT 4o \n ### chat, generate images, perform web searches, and Q&A with images.",
    textbox=gr.MultimodalTextbox(),
    multimodal=True,
    concurrency_limit=200,
    cache_examples=False,
)

canvas = gr.HTML(
    """
    <style>
       .custom-chatbot {
            width: 100%;
            height: 80vh;
            border: 1px solid #ccc;
            border-radius: 10px;
            padding: 20px;
            background-color: #f7f7f7;
        }
       .chatbot-header {
            font-size: 20px;
            font-weight: bold;
            display: flex;
            justify-content: space-between;
            align-items: center;
            padding: 10px;
            border-bottom: 1px solid #ccc;
        }
       .chatbot-header.title {
            font-size: 18px;
        }
       .chatbot-header.logout {
            font-size: 14px;
            cursor: pointer;
            margin-left: 10px;
        }
       .chatbot-header.logout:hover {
            text-decoration: underline;
        }
       .chat-message {
            display: flex;
            flex-direction: column;
            align-items: flex-start;
            padding: 10px;
        }
       .chat-message.text {
            background-color: #fff;
            padding: 10px;
            border-radius: 10px;
        }
       .chat-message.text.self {
            background-color: #dafff7;
        }
       .chat-message.text.date {
            font-size: 12px;
            color: #666;
            margin-top: 5px;
        }
       .chat-message.input {
            flex-grow: 1;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 10px;
            font-size: 16px;
        }
    </style>
    <div class="custom-chatbot">
        <header class="chatbot-header">
            <div class="title">OpenGPT Chatbot</div>
            <div class="logout" onclick="logout()">Logout</div>
        </header>
        <div class="chat-messages">
            <div class="chat-message" id="messages-container">
                <!-- messages will be rendered here -->
            </div>
            <div class="chat-input">
                <input type="text" id="chat-input" />
                <button id="send-btn">Send</button>
            </div>
        </div>
    </div>
"""
)

demo.launch(canvas=canvas)