Spaces:
Sleeping
Sleeping
File size: 12,483 Bytes
4a8ac8b 7e5261e 483e97a 7e5261e 196bddf 483e97a 196bddf 483e97a 7e5261e 5a8275a 7e5261e 5a8275a 14d257f 7e5261e 5a8275a 6cf979c 8d7d352 483e97a 6cf979c 483e97a 6cf979c 483e97a 8d7d352 483e97a 5a8275a 6cf979c b70feb9 483e97a 6cf979c 06bea5a 7e5261e 483e97a 4a8ac8b b70feb9 4a8ac8b b70feb9 4a8ac8b 483e97a 4a8ac8b 7ea7941 4a8ac8b 8276bc3 7ea7941 4a8ac8b 8c8d4ad 7ea7941 4a8ac8b 483e97a 4a8ac8b 8276bc3 4a8ac8b 483e97a 7ea7941 c08168a 7ea7941 c938b2a c08168a 483e97a 7ea7941 666a2c5 4a8ac8b 5a8275a 403cffd 5a8275a 483e97a 5a8275a 483e97a b70feb9 483e97a b70feb9 483e97a b70feb9 483e97a b70feb9 5a8275a 483e97a 5a8275a b70feb9 5a8275a 483e97a 5a8275a b70feb9 483e97a 983867e 483e97a b70feb9 983867e 5a8275a 461252c b70feb9 461252c c3b2412 5a8275a c3b2412 5a8275a 483e97a 5a8275a b70feb9 483e97a 5a8275a b70feb9 5a8275a b70feb9 483e97a 5a8275a b70feb9 5a8275a b70feb9 5a8275a b70feb9 5f52f23 5a8275a b70feb9 5a8275a d6b7fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import cv2
from gradio_client import Client, file
def image_gen(prompt):
client = Client("KingNish/Image-Gen-Pro")
return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro")
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
model.to("cpu")
def llava(message, history):
if message["files"]:
image = message["files"][0]
else:
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
txt = message["text"]
gr.Info("Analyzing image")
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{txt}<|im_start|>assistant"
inputs = processor(prompt, image, return_tensors="pt")
return inputs
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
def search(query):
term = query
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 3, "udm": 14},
timeout=5,
verify=None,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
link = link["href"]
try:
webpage = session.get(link, headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
timeout=5, verify=False)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients for different models
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat")
# Define the main chat function
def respond(message, history):
func_caller = []
user_prompt = message
# Handle image processing
if message["files"]:
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on google",
"parameters": {"type": "object", "properties": {
"query": {"type": "string", "description": "web search query"}},
"required": ["query"]}}},
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER",
"parameters": {"type": "object", "properties": {
"prompt": {"type": "string", "description": "A detailed prompt"}},
"required": ["prompt"]}}},
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user",
"parameters": {"type": "object", "properties": {
"query": {"type": "string",
"description": "image generation prompt"}},
"required": ["query"]}}},
{"type": "function",
"function": {"name": "image_qna", "description": "Answer question asked by user related to image",
"parameters": {"type": "object",
"properties": {"query": {"type": "string", "description": "Question by user"}},
"required": ["query"]}}},
]
for msg in history:
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
message_text = message["text"]
func_caller.append({"role": "user",
"content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
response = client_gemma.chat_completion(func_caller, max_tokens=200)
response = str(response)
try:
response = response[int(response.find("{")):int(response.rindex("</"))]
except:
response = response[int(response.find("{")):(int(response.rfind("}")) + 1)]
response = response.replace("\\n", "")
response = response.replace("\\'", "'")
response = response.replace('\\"', '"')
response = response.replace('\\', '')
print(f"\n{response}")
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = search(query)
gr.Info("Extracting relevant Info")
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
messages = f"<|im_start|>system\nYou are OpenCHAT mini a helpful assistant made by Nithish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "hello":
output += response.token.text.replace("<|im_end|>", "")
yield output
elif json_data["name"] == "image_generation":
query = json_data["arguments"]["query"]
gr.Info("Generating Image, Please wait 10 sec...")
yield "Generating Image, Please wait 10 sec..."
try:
client_sd3 = InferenceClient("black-forest-labs/FLUX.1-dev")
seed = random.randint(0, 999999)
negativeprompt = "blurry, low resolution, distorted faces, extra limbs, unnatural colors, harsh lighting, overexposed, underexposed, crowded background, text, logos, artifacts, low detail, bad anatomy, inaccurate proportions, pixelated."
image = client_sd3.text_to_image(query, negative_prompt=f"{seed},{negativeprompt}")
yield gr.Image(image)
except:
image = image_gen(f"{str(query)}")
yield gr.Image(image[1])
elif json_data["name"] == "image_qna":
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
messages = f"<|im_start|>system\nYou are OpenGPT a Expert AI Chat bot made by Nithish. You answers users query like professional AI. You are also Mastered in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
stream = client_yi.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|endoftext|>":
output += response.token.text.replace("<|im_end|>", "")
yield output
except:
messages = f"<|start_header_id|>system\nYou are OpenGPT a helpful AI CHAT BOT made by Nithish. You answers users query like professional . You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages += f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True,
details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
demo = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
description="# OpenGPT 4o \n ### chat, generate images, perform web searches, and Q&A with images.",
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=200,
cache_examples=False,
)
demo.launch() |