import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM import spaces title = "Fakypedia" DESCRIPTION = """\ # Genarate a silly article A bilingual (English and Hebrew) [nonsense generation model](https://huggingface.co/Norod78/SmolLM-135M-FakyPedia-EngHeb) which produces silly Wikipedia-like abstract text. Tap on the \"Submit\" button to generate a silly and/or fake \"Wikipedia-Like\" article based on the input title """ article = "

This model extended the tokenizer of and is a fine-tuned of [SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct)

" CUDA_AVAILABLE = torch.cuda.is_available() device = torch.device("cuda" if CUDA_AVAILABLE else "cpu") model_id = "Norod78/SmolLM-135M-FakyPedia-EngHeb" tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token_id = tokenizer.eos_token_id bos_token = tokenizer.bos_token model = AutoModelForCausalLM.from_pretrained(model_id).to(device) model.generation_config.pad_token_id = tokenizer.pad_token_id torch.manual_seed(1234) @spaces.GPU def generate_fakypedia(article_title: str): with torch.no_grad(): result = "" string_to_tokenize= f"{bos_token}\\%{article_title}" input_ids = tokenizer( string_to_tokenize, return_tensors="pt").input_ids.to(device) sample_outputs = model.generate(input_ids, do_sample=True,repetition_penalty=1.2, temperature=0.5, max_length=96, num_return_sequences=3) if article_title == None or len(article_title) == 0: result += f"# Fakypedia results with random titles \n" article_title = "" else: result += f"# Fakypedia results for \"{article_title}\" \n" for i, sample_output in enumerate(sample_outputs): decoded_output = tokenizer.decode(sample_output, skip_special_tokens=True) decoded_output = decoded_output.replace(f"\%{article_title}", f"## {article_title}").replace("\%", " ").replace("\\n", " \n") decoded_output = decoded_output.replace("## \n", "\n") result += "{}\n".format(decoded_output) return result demo = gr.Interface( generate_fakypedia, inputs=gr.Textbox(lines=1, label="Enter a title for the article (or leave blank for a random one)"), outputs=gr.Markdown(label="Generated fakypedia article"), title=title, description=DESCRIPTION, article=article, examples=["Hugging face", "A socially awkward potato", "דורון אדלר", ""], allow_flagging="never", ) demo.queue() demo.launch()