Spaces:
Sleeping
Sleeping
File size: 7,569 Bytes
bb81981 4053154 bb81981 ff88c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import json
import logging
import os
import re
import shutil
from functools import lru_cache
from typing import Optional, List, Tuple, Mapping
import gradio as gr
import numpy as np
from PIL import Image
from hbutils.system import pip_install
from huggingface_hub import hf_hub_download
def _ensure_onnxruntime():
try:
import onnxruntime
except (ImportError, ModuleNotFoundError):
logging.warning('Onnx runtime not installed, preparing to install ...')
if shutil.which('nvidia-smi'):
logging.info('Installing onnxruntime-gpu ...')
pip_install(['onnxruntime-gpu'], silent=True)
else:
logging.info('Installing onnxruntime (cpu) ...')
pip_install(['onnxruntime'], silent=True)
_ensure_onnxruntime()
from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \
GraphOptimizationLevel
alias = {
'gpu': "CUDAExecutionProvider",
"trt": "TensorrtExecutionProvider",
}
def get_onnx_provider(provider: Optional[str] = None):
if not provider:
if "CUDAExecutionProvider" in get_available_providers():
return "CUDAExecutionProvider"
else:
return "CPUExecutionProvider"
elif provider.lower() in alias:
return alias[provider.lower()]
else:
for p in get_all_providers():
if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower():
return p
raise ValueError(f'One of the {get_all_providers()!r} expected, '
f'but unsupported provider {provider!r} found.')
def resize(pic: Image.Image, size: int, keep_ratio: float = True) -> Image.Image:
if not keep_ratio:
target_size = (size, size)
else:
min_edge = min(pic.size)
target_size = (
int(pic.size[0] / min_edge * size),
int(pic.size[1] / min_edge * size),
)
target_size = (
(target_size[0] // 4) * 4,
(target_size[1] // 4) * 4,
)
return pic.resize(target_size, resample=Image.Resampling.BILINEAR)
def to_tensor(pic: Image.Image):
img: np.ndarray = np.array(pic, np.uint8, copy=True)
img = img.reshape(pic.size[1], pic.size[0], len(pic.getbands()))
# put it from HWC to CHW format
img = img.transpose((2, 0, 1))
return img.astype(np.float32) / 255
def fill_background(pic: Image.Image, background: str = 'white') -> Image.Image:
if pic.mode == 'RGB':
return pic
if pic.mode != 'RGBA':
pic = pic.convert('RGBA')
background = background or 'white'
result = Image.new('RGBA', pic.size, background)
result.paste(pic, (0, 0), pic)
return result.convert('RGB')
def image_to_tensor(pic: Image.Image, size: int = 512, keep_ratio: float = True, background: str = 'white'):
return to_tensor(resize(fill_background(pic, background), size, keep_ratio))
MODELS = [
'ml_caformer_m36_dec-5-97527.onnx',
'ml_caformer_m36_dec-3-80000.onnx',
'TResnet-D-FLq_ema_6-30000.onnx',
'TResnet-D-FLq_ema_6-10000.onnx',
'TResnet-D-FLq_ema_4-10000.onnx',
'TResnet-D-FLq_ema_2-40000.onnx',
]
DEFAULT_MODEL = MODELS[0]
def get_onnx_model_file(name=DEFAULT_MODEL):
return hf_hub_download(
repo_id='deepghs/ml-danbooru-onnx',
filename=name,
)
@lru_cache()
def _open_onnx_model(ckpt: str, provider: str) -> InferenceSession:
options = SessionOptions()
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
if provider == "CPUExecutionProvider":
options.intra_op_num_threads = os.cpu_count()
logging.info(f'Model {ckpt!r} loaded with provider {provider!r}')
return InferenceSession(ckpt, options, [provider])
def load_classes() -> List[str]:
classes_file = hf_hub_download(
repo_id='deepghs/ml-danbooru-onnx',
filename='classes.json',
)
with open(classes_file, 'r', encoding='utf-8') as f:
return json.load(f)
def get_tags_from_image(pic: Image.Image, threshold: float = 0.7, size: int = 512, keep_ratio: bool = False,
model_name=DEFAULT_MODEL):
real_input = image_to_tensor(pic, size, keep_ratio)
real_input = real_input.reshape(1, *real_input.shape)
model = _open_onnx_model(get_onnx_model_file(model_name), get_onnx_provider('cpu'))
native_output, = model.run(['output'], {'input': real_input})
output = (1 / (1 + np.exp(-native_output))).reshape(-1)
tags = load_classes()
pairs = sorted([(tags[i], ratio) for i, ratio in enumerate(output)], key=lambda x: (-x[1], x[0]))
return {tag: float(ratio) for tag, ratio in pairs if ratio >= threshold}
RE_SPECIAL = re.compile(r'([\\()])')
def image_to_mldanbooru_tags(pic: Image.Image, threshold: float, size: int, keep_ratio: bool, model: str,
use_spaces: bool, use_escape: bool, include_ranks: bool, score_descend: bool) \
-> Tuple[str, Mapping[str, float]]:
filtered_tags = get_tags_from_image(pic, threshold, size, keep_ratio, model)
text_items = []
tags_pairs = filtered_tags.items()
if score_descend:
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
for tag, score in tags_pairs:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{score:.3f})"
text_items.append(tag_outformat)
output_text = ', '.join(text_items)
return output_text, filtered_tags
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr_input_image = gr.Image(type='pil', label='Original Image')
with gr.Row():
gr_threshold = gr.Slider(0.0, 1.0, 0.7, label='Tagging Confidence Threshold')
# gr_image_size = gr.Slider(128, 960, 640, step=32, label='Image for Recognition')
gr_image_size = gr.Slider(128, 960, 448, step=32, label='Image for Recognition')
gr_keep_ratio = gr.Checkbox(value=False, label='Keep the Ratio')
with gr.Row():
gr_model = gr.Dropdown(MODELS, value=DEFAULT_MODEL, label='Model')
with gr.Row():
gr_space = gr.Checkbox(value=False, label='Use Space Instead Of _')
gr_escape = gr.Checkbox(value=True, label='Use Text Escape')
gr_confidence = gr.Checkbox(value=False, label='Keep Confidences')
gr_order = gr.Checkbox(value=True, label='Descend By Confidence')
gr_btn_submit = gr.Button(value='Tagging', variant='primary')
with gr.Column():
with gr.Tabs():
with gr.Tab("Tags"):
gr_tags = gr.Label(label='Tags')
with gr.Tab("Exported Text"):
gr_output_text = gr.TextArea(label='Exported Text')
gr_btn_submit.click(
image_to_mldanbooru_tags,
inputs=[
gr_input_image, gr_threshold, gr_image_size,
gr_keep_ratio, gr_model,
gr_space, gr_escape, gr_confidence, gr_order
],
outputs=[gr_output_text, gr_tags],
api_name="secret"
)
demo.queue(os.cpu_count()).launch(show_api=True) |