File size: 7,569 Bytes
bb81981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4053154
bb81981
ff88c89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import json
import logging
import os
import re
import shutil
from functools import lru_cache
from typing import Optional, List, Tuple, Mapping

import gradio as gr
import numpy as np
from PIL import Image
from hbutils.system import pip_install
from huggingface_hub import hf_hub_download


def _ensure_onnxruntime():
    try:
        import onnxruntime
    except (ImportError, ModuleNotFoundError):
        logging.warning('Onnx runtime not installed, preparing to install ...')
        if shutil.which('nvidia-smi'):
            logging.info('Installing onnxruntime-gpu ...')
            pip_install(['onnxruntime-gpu'], silent=True)
        else:
            logging.info('Installing onnxruntime (cpu) ...')
            pip_install(['onnxruntime'], silent=True)


_ensure_onnxruntime()
from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \
    GraphOptimizationLevel

alias = {
    'gpu': "CUDAExecutionProvider",
    "trt": "TensorrtExecutionProvider",
}


def get_onnx_provider(provider: Optional[str] = None):
    if not provider:
        if "CUDAExecutionProvider" in get_available_providers():
            return "CUDAExecutionProvider"
        else:
            return "CPUExecutionProvider"
    elif provider.lower() in alias:
        return alias[provider.lower()]
    else:
        for p in get_all_providers():
            if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower():
                return p

        raise ValueError(f'One of the {get_all_providers()!r} expected, '
                         f'but unsupported provider {provider!r} found.')


def resize(pic: Image.Image, size: int, keep_ratio: float = True) -> Image.Image:
    if not keep_ratio:
        target_size = (size, size)
    else:
        min_edge = min(pic.size)
        target_size = (
            int(pic.size[0] / min_edge * size),
            int(pic.size[1] / min_edge * size),
        )

    target_size = (
        (target_size[0] // 4) * 4,
        (target_size[1] // 4) * 4,
    )

    return pic.resize(target_size, resample=Image.Resampling.BILINEAR)


def to_tensor(pic: Image.Image):
    img: np.ndarray = np.array(pic, np.uint8, copy=True)
    img = img.reshape(pic.size[1], pic.size[0], len(pic.getbands()))

    # put it from HWC to CHW format
    img = img.transpose((2, 0, 1))
    return img.astype(np.float32) / 255


def fill_background(pic: Image.Image, background: str = 'white') -> Image.Image:
    if pic.mode == 'RGB':
        return pic
    if pic.mode != 'RGBA':
        pic = pic.convert('RGBA')

    background = background or 'white'
    result = Image.new('RGBA', pic.size, background)
    result.paste(pic, (0, 0), pic)

    return result.convert('RGB')


def image_to_tensor(pic: Image.Image, size: int = 512, keep_ratio: float = True, background: str = 'white'):
    return to_tensor(resize(fill_background(pic, background), size, keep_ratio))


MODELS = [
    'ml_caformer_m36_dec-5-97527.onnx',
    'ml_caformer_m36_dec-3-80000.onnx',
    'TResnet-D-FLq_ema_6-30000.onnx',
    'TResnet-D-FLq_ema_6-10000.onnx',
    'TResnet-D-FLq_ema_4-10000.onnx',
    'TResnet-D-FLq_ema_2-40000.onnx',
]
DEFAULT_MODEL = MODELS[0]


def get_onnx_model_file(name=DEFAULT_MODEL):
    return hf_hub_download(
        repo_id='deepghs/ml-danbooru-onnx',
        filename=name,
    )


@lru_cache()
def _open_onnx_model(ckpt: str, provider: str) -> InferenceSession:
    options = SessionOptions()
    options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
    if provider == "CPUExecutionProvider":
        options.intra_op_num_threads = os.cpu_count()

    logging.info(f'Model {ckpt!r} loaded with provider {provider!r}')
    return InferenceSession(ckpt, options, [provider])


def load_classes() -> List[str]:
    classes_file = hf_hub_download(
        repo_id='deepghs/ml-danbooru-onnx',
        filename='classes.json',
    )
    with open(classes_file, 'r', encoding='utf-8') as f:
        return json.load(f)


def get_tags_from_image(pic: Image.Image, threshold: float = 0.7, size: int = 512, keep_ratio: bool = False,
                        model_name=DEFAULT_MODEL):
    real_input = image_to_tensor(pic, size, keep_ratio)
    real_input = real_input.reshape(1, *real_input.shape)

    model = _open_onnx_model(get_onnx_model_file(model_name), get_onnx_provider('cpu'))
    native_output, = model.run(['output'], {'input': real_input})

    output = (1 / (1 + np.exp(-native_output))).reshape(-1)
    tags = load_classes()
    pairs = sorted([(tags[i], ratio) for i, ratio in enumerate(output)], key=lambda x: (-x[1], x[0]))
    return {tag: float(ratio) for tag, ratio in pairs if ratio >= threshold}


RE_SPECIAL = re.compile(r'([\\()])')


def image_to_mldanbooru_tags(pic: Image.Image, threshold: float, size: int, keep_ratio: bool, model: str,
                             use_spaces: bool, use_escape: bool, include_ranks: bool, score_descend: bool) \
        -> Tuple[str, Mapping[str, float]]:
    filtered_tags = get_tags_from_image(pic, threshold, size, keep_ratio, model)

    text_items = []
    tags_pairs = filtered_tags.items()
    if score_descend:
        tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
    for tag, score in tags_pairs:
        tag_outformat = tag
        if use_spaces:
            tag_outformat = tag_outformat.replace('_', ' ')
        if use_escape:
            tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
        if include_ranks:
            tag_outformat = f"({tag_outformat}:{score:.3f})"
        text_items.append(tag_outformat)
    output_text = ', '.join(text_items)

    return output_text, filtered_tags


if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                gr_input_image = gr.Image(type='pil', label='Original Image')
                with gr.Row():
                    gr_threshold = gr.Slider(0.0, 1.0, 0.7, label='Tagging Confidence Threshold')
                    # gr_image_size = gr.Slider(128, 960, 640, step=32, label='Image for Recognition')
                    gr_image_size = gr.Slider(128, 960, 448, step=32, label='Image for Recognition')
                    gr_keep_ratio = gr.Checkbox(value=False, label='Keep the Ratio')
                with gr.Row():
                    gr_model = gr.Dropdown(MODELS, value=DEFAULT_MODEL, label='Model')
                with gr.Row():
                    gr_space = gr.Checkbox(value=False, label='Use Space Instead Of _')
                    gr_escape = gr.Checkbox(value=True, label='Use Text Escape')
                    gr_confidence = gr.Checkbox(value=False, label='Keep Confidences')
                    gr_order = gr.Checkbox(value=True, label='Descend By Confidence')

                gr_btn_submit = gr.Button(value='Tagging', variant='primary')

            with gr.Column():
                with gr.Tabs():
                    with gr.Tab("Tags"):
                        gr_tags = gr.Label(label='Tags')
                    with gr.Tab("Exported Text"):
                        gr_output_text = gr.TextArea(label='Exported Text')

        gr_btn_submit.click(
            image_to_mldanbooru_tags,
            inputs=[
                gr_input_image, gr_threshold, gr_image_size,
                gr_keep_ratio, gr_model,
                gr_space, gr_escape, gr_confidence, gr_order
            ],
            outputs=[gr_output_text, gr_tags],
            api_name="secret"
        )
    demo.queue(os.cpu_count()).launch(show_api=True)