File size: 38,320 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
# Copyright (c) Facebook, Inc. and its affiliates.
import collections
import copy
import functools
import logging
import numpy as np
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from unittest import mock
import caffe2.python.utils as putils
import torch
import torch.nn.functional as F
from caffe2.proto import caffe2_pb2
from caffe2.python import core, net_drawer, workspace
from torch.nn.functional import interpolate as interp
logger = logging.getLogger(__name__)
# ==== torch/utils_toffee/cast.py =======================================
def to_device(t, device_str):
"""
This function is a replacement of .to(another_device) such that it allows the
casting to be traced properly by explicitly calling the underlying copy ops.
It also avoids introducing unncessary op when casting to the same device.
"""
src = t.device
dst = torch.device(device_str)
if src == dst:
return t
elif src.type == "cuda" and dst.type == "cpu":
return torch.ops._caffe2.CopyGPUToCPU(t)
elif src.type == "cpu" and dst.type == "cuda":
return torch.ops._caffe2.CopyCPUToGPU(t)
else:
raise RuntimeError("Can't cast tensor from device {} to device {}".format(src, dst))
# ==== torch/utils_toffee/interpolate.py =======================================
# Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py
def BilinearInterpolation(tensor_in, up_scale):
assert up_scale % 2 == 0, "Scale should be even"
def upsample_filt(size):
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
kernel_size = int(up_scale) * 2
bil_filt = upsample_filt(kernel_size)
dim = int(tensor_in.shape[1])
kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32)
kernel[range(dim), range(dim), :, :] = bil_filt
tensor_out = F.conv_transpose2d(
tensor_in,
weight=to_device(torch.Tensor(kernel), tensor_in.device),
bias=None,
stride=int(up_scale),
padding=int(up_scale / 2),
)
return tensor_out
# NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if
# using dynamic `scale_factor` rather than static `size`. (T43166860)
# NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly.
def onnx_compatibale_interpolate(
input, size=None, scale_factor=None, mode="nearest", align_corners=None
):
# NOTE: The input dimensions are interpreted in the form:
# `mini-batch x channels x [optional depth] x [optional height] x width`.
if size is None and scale_factor is not None:
if input.dim() == 4:
if isinstance(scale_factor, (int, float)):
height_scale, width_scale = (scale_factor, scale_factor)
else:
assert isinstance(scale_factor, (tuple, list))
assert len(scale_factor) == 2
height_scale, width_scale = scale_factor
assert not align_corners, "No matching C2 op for align_corners == True"
if mode == "nearest":
return torch.ops._caffe2.ResizeNearest(
input, order="NCHW", width_scale=width_scale, height_scale=height_scale
)
elif mode == "bilinear":
logger.warning(
"Use F.conv_transpose2d for bilinear interpolate"
" because there's no such C2 op, this may cause significant"
" slowdown and the boundary pixels won't be as same as"
" using F.interpolate due to padding."
)
assert height_scale == width_scale
return BilinearInterpolation(input, up_scale=height_scale)
logger.warning("Output size is not static, it might cause ONNX conversion issue")
return interp(input, size, scale_factor, mode, align_corners)
def mock_torch_nn_functional_interpolate():
def decorator(func):
@functools.wraps(func)
def _mock_torch_nn_functional_interpolate(*args, **kwargs):
if torch.onnx.is_in_onnx_export():
with mock.patch(
"torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate
):
return func(*args, **kwargs)
else:
return func(*args, **kwargs)
return _mock_torch_nn_functional_interpolate
return decorator
# ==== torch/utils_caffe2/ws_utils.py ==========================================
class ScopedWS:
def __init__(self, ws_name, is_reset, is_cleanup=False):
self.ws_name = ws_name
self.is_reset = is_reset
self.is_cleanup = is_cleanup
self.org_ws = ""
def __enter__(self):
self.org_ws = workspace.CurrentWorkspace()
if self.ws_name is not None:
workspace.SwitchWorkspace(self.ws_name, True)
if self.is_reset:
workspace.ResetWorkspace()
return workspace
def __exit__(self, *args):
if self.is_cleanup:
workspace.ResetWorkspace()
if self.ws_name is not None:
workspace.SwitchWorkspace(self.org_ws)
def fetch_any_blob(name):
bb = None
try:
bb = workspace.FetchBlob(name)
except TypeError:
bb = workspace.FetchInt8Blob(name)
except Exception as e:
logger.error("Get blob {} error: {}".format(name, e))
return bb
# ==== torch/utils_caffe2/protobuf.py ==========================================
def get_pb_arg(pb, arg_name):
for x in pb.arg:
if x.name == arg_name:
return x
return None
def get_pb_arg_valf(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return arg.f if arg is not None else default_val
def get_pb_arg_floats(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return list(map(float, arg.floats)) if arg is not None else default_val
def get_pb_arg_ints(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return list(map(int, arg.ints)) if arg is not None else default_val
def get_pb_arg_vali(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return arg.i if arg is not None else default_val
def get_pb_arg_vals(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return arg.s if arg is not None else default_val
def get_pb_arg_valstrings(pb, arg_name, default_val):
arg = get_pb_arg(pb, arg_name)
return list(arg.strings) if arg is not None else default_val
def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False):
arg = get_pb_arg(pb, arg_name)
if arg is None:
arg = putils.MakeArgument(arg_name, arg_value)
assert hasattr(arg, arg_attr)
pb.arg.extend([arg])
if allow_override and getattr(arg, arg_attr) != arg_value:
logger.warning(
"Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value)
)
setattr(arg, arg_attr, arg_value)
else:
assert arg is not None
assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format(
getattr(arg, arg_attr), arg_value
)
def _create_const_fill_op_from_numpy(name, tensor, device_option=None):
assert type(tensor) == np.ndarray
kTypeNameMapper = {
np.dtype("float32"): "GivenTensorFill",
np.dtype("int32"): "GivenTensorIntFill",
np.dtype("int64"): "GivenTensorInt64Fill",
np.dtype("uint8"): "GivenTensorStringFill",
}
args_dict = {}
if tensor.dtype == np.dtype("uint8"):
args_dict.update({"values": [str(tensor.data)], "shape": [1]})
else:
args_dict.update({"values": tensor, "shape": tensor.shape})
if device_option is not None:
args_dict["device_option"] = device_option
return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict)
def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor):
assert type(int8_tensor) == workspace.Int8Tensor
kTypeNameMapper = {
np.dtype("int32"): "Int8GivenIntTensorFill",
np.dtype("uint8"): "Int8GivenTensorFill",
}
tensor = int8_tensor.data
assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")]
values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor
return core.CreateOperator(
kTypeNameMapper[tensor.dtype],
[],
[name],
values=values,
shape=tensor.shape,
Y_scale=int8_tensor.scale,
Y_zero_point=int8_tensor.zero_point,
)
def create_const_fill_op(
name: str,
blob: Union[np.ndarray, workspace.Int8Tensor],
device_option: Optional[caffe2_pb2.DeviceOption] = None,
) -> caffe2_pb2.OperatorDef:
"""
Given a blob object, return the Caffe2 operator that creates this blob
as constant. Currently support NumPy tensor and Caffe2 Int8Tensor.
"""
tensor_type = type(blob)
assert tensor_type in [
np.ndarray,
workspace.Int8Tensor,
], 'Error when creating const fill op for "{}", unsupported blob type: {}'.format(
name, type(blob)
)
if tensor_type == np.ndarray:
return _create_const_fill_op_from_numpy(name, blob, device_option)
elif tensor_type == workspace.Int8Tensor:
assert device_option is None
return _create_const_fill_op_from_c2_int8_tensor(name, blob)
def construct_init_net_from_params(
params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None
) -> caffe2_pb2.NetDef:
"""
Construct the init_net from params dictionary
"""
init_net = caffe2_pb2.NetDef()
device_options = device_options or {}
for name, blob in params.items():
if isinstance(blob, str):
logger.warning(
(
"Blob {} with type {} is not supported in generating init net,"
" skipped.".format(name, type(blob))
)
)
continue
init_net.op.extend(
[create_const_fill_op(name, blob, device_option=device_options.get(name, None))]
)
init_net.external_output.append(name)
return init_net
def get_producer_map(ssa):
"""
Return dict from versioned blob to (i, j),
where i is index of producer op, j is the index of output of that op.
"""
producer_map = {}
for i in range(len(ssa)):
outputs = ssa[i][1]
for j, outp in enumerate(outputs):
producer_map[outp] = (i, j)
return producer_map
def get_consumer_map(ssa):
"""
Return dict from versioned blob to list of (i, j),
where i is index of consumer op, j is the index of input of that op.
"""
consumer_map = collections.defaultdict(list)
for i in range(len(ssa)):
inputs = ssa[i][0]
for j, inp in enumerate(inputs):
consumer_map[inp].append((i, j))
return consumer_map
def get_params_from_init_net(
init_net: caffe2_pb2.NetDef,
) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]:
"""
Take the output blobs from init_net by running it.
Outputs:
params: dict from blob name to numpy array
device_options: dict from blob name to the device option of its creating op
"""
# NOTE: this assumes that the params is determined by producer op with the
# only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor.
def _get_device_option(producer_op):
if producer_op.type == "CopyGPUToCPU":
return caffe2_pb2.DeviceOption()
else:
return producer_op.device_option
with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws:
ws.RunNetOnce(init_net)
params = {b: fetch_any_blob(b) for b in init_net.external_output}
ssa, versions = core.get_ssa(init_net)
producer_map = get_producer_map(ssa)
device_options = {
b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]])
for b in init_net.external_output
}
return params, device_options
def _updater_raise(op, input_types, output_types):
raise RuntimeError(
"Failed to apply updater for op {} given input_types {} and"
" output_types {}".format(op, input_types, output_types)
)
def _generic_status_identifier(
predict_net: caffe2_pb2.NetDef,
status_updater: Callable,
known_status: Dict[Tuple[str, int], Any],
) -> Dict[Tuple[str, int], Any]:
"""
Statically infer the status of each blob, the status can be such as device type
(CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here
is versioned blob (Tuple[str, int]) in the format compatible with ssa.
Inputs:
predict_net: the caffe2 network
status_updater: a callable, given an op and the status of its input/output,
it returns the updated status of input/output. `None` is used for
representing unknown status.
known_status: a dict containing known status, used as initialization.
Outputs:
A dict mapping from versioned blob to its status
"""
ssa, versions = core.get_ssa(predict_net)
versioned_ext_input = [(b, 0) for b in predict_net.external_input]
versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output]
all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa])
allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union(versioned_ext_output)
assert all(k in allowed_vbs for k in known_status)
assert all(v is not None for v in known_status.values())
_known_status = copy.deepcopy(known_status)
def _check_and_update(key, value):
assert value is not None
if key in _known_status:
if not _known_status[key] == value:
raise RuntimeError(
"Confilict status for {}, existing status {}, new status {}".format(
key, _known_status[key], value
)
)
_known_status[key] = value
def _update_i(op, ssa_i):
versioned_inputs = ssa_i[0]
versioned_outputs = ssa_i[1]
inputs_status = [_known_status.get(b, None) for b in versioned_inputs]
outputs_status = [_known_status.get(b, None) for b in versioned_outputs]
new_inputs_status, new_outputs_status = status_updater(op, inputs_status, outputs_status)
for versioned_blob, status in zip(
versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status
):
if status is not None:
_check_and_update(versioned_blob, status)
for op, ssa_i in zip(predict_net.op, ssa):
_update_i(op, ssa_i)
for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)):
_update_i(op, ssa_i)
# NOTE: This strictly checks all the blob from predict_net must be assgined
# a known status. However sometimes it's impossible (eg. having deadend op),
# we may relax this constraint if
for k in all_versioned_blobs:
if k not in _known_status:
raise NotImplementedError(
"Can not infer the status for {}. Currently only support the case where"
" a single forward and backward pass can identify status for all blobs.".format(k)
)
return _known_status
def infer_device_type(
predict_net: caffe2_pb2.NetDef,
known_status: Dict[Tuple[str, int], Any],
device_name_style: str = "caffe2",
) -> Dict[Tuple[str, int], str]:
"""Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob"""
assert device_name_style in ["caffe2", "pytorch"]
_CPU_STR = "cpu"
_GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda"
def _copy_cpu_to_gpu_updater(op, input_types, output_types):
if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR:
_updater_raise(op, input_types, output_types)
return ([_CPU_STR], [_GPU_STR])
def _copy_gpu_to_cpu_updater(op, input_types, output_types):
if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR:
_updater_raise(op, input_types, output_types)
return ([_GPU_STR], [_CPU_STR])
def _other_ops_updater(op, input_types, output_types):
non_none_types = [x for x in input_types + output_types if x is not None]
if len(non_none_types) > 0:
the_type = non_none_types[0]
if not all(x == the_type for x in non_none_types):
_updater_raise(op, input_types, output_types)
else:
the_type = None
return ([the_type for _ in op.input], [the_type for _ in op.output])
def _device_updater(op, *args, **kwargs):
return {
"CopyCPUToGPU": _copy_cpu_to_gpu_updater,
"CopyGPUToCPU": _copy_gpu_to_cpu_updater,
}.get(op.type, _other_ops_updater)(op, *args, **kwargs)
return _generic_status_identifier(predict_net, _device_updater, known_status)
# ==== torch/utils_caffe2/vis.py ===============================================
def _modify_blob_names(ops, blob_rename_f):
ret = []
def _replace_list(blob_list, replaced_list):
del blob_list[:]
blob_list.extend(replaced_list)
for x in ops:
cur = copy.deepcopy(x)
_replace_list(cur.input, list(map(blob_rename_f, cur.input)))
_replace_list(cur.output, list(map(blob_rename_f, cur.output)))
ret.append(cur)
return ret
def _rename_blob(name, blob_sizes, blob_ranges):
def _list_to_str(bsize):
ret = ", ".join([str(x) for x in bsize])
ret = "[" + ret + "]"
return ret
ret = name
if blob_sizes is not None and name in blob_sizes:
ret += "\n" + _list_to_str(blob_sizes[name])
if blob_ranges is not None and name in blob_ranges:
ret += "\n" + _list_to_str(blob_ranges[name])
return ret
# graph_name could not contain word 'graph'
def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None):
blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges)
return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f)
def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None):
graph = None
ops = net.op
if blob_rename_func is not None:
ops = _modify_blob_names(ops, blob_rename_func)
if not op_only:
graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB")
else:
graph = net_drawer.GetPydotGraphMinimal(
ops, graph_name, rankdir="TB", minimal_dependency=True
)
try:
par_dir = os.path.dirname(file_name)
if not os.path.exists(par_dir):
os.makedirs(par_dir)
format = os.path.splitext(os.path.basename(file_name))[-1]
if format == ".png":
graph.write_png(file_name)
elif format == ".pdf":
graph.write_pdf(file_name)
elif format == ".svg":
graph.write_svg(file_name)
else:
print("Incorrect format {}".format(format))
except Exception as e:
print("Error when writing graph to image {}".format(e))
return graph
# ==== torch/utils_toffee/aten_to_caffe2.py ====================================
def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef):
"""
For ONNX exported model, GroupNorm will be represented as ATen op,
this can be a drop in replacement from ATen to GroupNorm
"""
count = 0
for op in predict_net.op:
if op.type == "ATen":
op_name = get_pb_arg_vals(op, "operator", None) # return byte in py3
if op_name and op_name.decode() == "group_norm":
op.arg.remove(get_pb_arg(op, "operator"))
if get_pb_arg_vali(op, "cudnn_enabled", None):
op.arg.remove(get_pb_arg(op, "cudnn_enabled"))
num_groups = get_pb_arg_vali(op, "num_groups", None)
if num_groups is not None:
op.arg.remove(get_pb_arg(op, "num_groups"))
check_set_pb_arg(op, "group", "i", num_groups)
op.type = "GroupNorm"
count += 1
if count > 1:
logger.info("Replaced {} ATen operator to GroupNormOp".format(count))
# ==== torch/utils_toffee/alias.py =============================================
def alias(x, name, is_backward=False):
if not torch.onnx.is_in_onnx_export():
return x
assert isinstance(x, torch.Tensor)
return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward)
def fuse_alias_placeholder(predict_net, init_net):
"""Remove AliasWithName placeholder and rename the input/output of it"""
# First we finish all the re-naming
for i, op in enumerate(predict_net.op):
if op.type == "AliasWithName":
assert len(op.input) == 1
assert len(op.output) == 1
name = get_pb_arg_vals(op, "name", None).decode()
is_backward = bool(get_pb_arg_vali(op, "is_backward", 0))
rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward)
rename_op_output(predict_net, i, 0, name)
# Remove AliasWithName, should be very safe since it's a non-op
new_ops = []
for op in predict_net.op:
if op.type != "AliasWithName":
new_ops.append(op)
else:
# safety check
assert op.input == op.output
assert op.input[0] == op.arg[0].s.decode()
del predict_net.op[:]
predict_net.op.extend(new_ops)
# ==== torch/utils_caffe2/graph_transform.py ===================================
class IllegalGraphTransformError(ValueError):
"""When a graph transform function call can't be executed."""
def _rename_versioned_blob_in_proto(
proto: caffe2_pb2.NetDef,
old_name: str,
new_name: str,
version: int,
ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]],
start_versions: Dict[str, int],
end_versions: Dict[str, int],
):
"""In given proto, rename all blobs with matched version"""
# Operater list
for op, i_th_ssa in zip(proto.op, ssa):
versioned_inputs, versioned_outputs = i_th_ssa
for i in range(len(op.input)):
if versioned_inputs[i] == (old_name, version):
op.input[i] = new_name
for i in range(len(op.output)):
if versioned_outputs[i] == (old_name, version):
op.output[i] = new_name
# external_input
if start_versions.get(old_name, 0) == version:
for i in range(len(proto.external_input)):
if proto.external_input[i] == old_name:
proto.external_input[i] = new_name
# external_output
if end_versions.get(old_name, 0) == version:
for i in range(len(proto.external_output)):
if proto.external_output[i] == old_name:
proto.external_output[i] = new_name
def rename_op_input(
predict_net: caffe2_pb2.NetDef,
init_net: caffe2_pb2.NetDef,
op_id: int,
input_id: int,
new_name: str,
from_producer: bool = False,
):
"""
Rename the op_id-th operator in predict_net, change it's input_id-th input's
name to the new_name. It also does automatic re-route and change
external_input and init_net if necessary.
- It requires the input is only consumed by this op.
- This function modifies predict_net and init_net in-place.
- When from_producer is enable, this also updates other operators that consumes
the same input. Be cautious because may trigger unintended behavior.
"""
assert isinstance(predict_net, caffe2_pb2.NetDef)
assert isinstance(init_net, caffe2_pb2.NetDef)
init_net_ssa, init_net_versions = core.get_ssa(init_net)
predict_net_ssa, predict_net_versions = core.get_ssa(
predict_net, copy.deepcopy(init_net_versions)
)
versioned_inputs, versioned_outputs = predict_net_ssa[op_id]
old_name, version = versioned_inputs[input_id]
if from_producer:
producer_map = get_producer_map(predict_net_ssa)
if not (old_name, version) in producer_map:
raise NotImplementedError(
"Can't find producer, the input {} is probably from"
" init_net, this is not supported yet.".format(old_name)
)
producer = producer_map[(old_name, version)]
rename_op_output(predict_net, producer[0], producer[1], new_name)
return
def contain_targets(op_ssa):
return (old_name, version) in op_ssa[0]
is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa]
if sum(is_consumer) > 1:
raise IllegalGraphTransformError(
(
"Input '{}' of operator(#{}) are consumed by other ops, please use"
+ " rename_op_output on the producer instead. Offending op: \n{}"
).format(old_name, op_id, predict_net.op[op_id])
)
# update init_net
_rename_versioned_blob_in_proto(
init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions
)
# update predict_net
_rename_versioned_blob_in_proto(
predict_net,
old_name,
new_name,
version,
predict_net_ssa,
init_net_versions,
predict_net_versions,
)
def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str):
"""
Rename the op_id-th operator in predict_net, change it's output_id-th input's
name to the new_name. It also does automatic re-route and change
external_output and if necessary.
- It allows multiple consumers of its output.
- This function modifies predict_net in-place, doesn't need init_net.
"""
assert isinstance(predict_net, caffe2_pb2.NetDef)
ssa, blob_versions = core.get_ssa(predict_net)
versioned_inputs, versioned_outputs = ssa[op_id]
old_name, version = versioned_outputs[output_id]
# update predict_net
_rename_versioned_blob_in_proto(
predict_net, old_name, new_name, version, ssa, {}, blob_versions
)
def get_sub_graph_external_input_output(
predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int]
) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]:
"""
Return the list of external input/output of sub-graph,
each element is tuple of the name and corresponding version in predict_net.
external input/output is defined the same way as caffe2 NetDef.
"""
ssa, versions = core.get_ssa(predict_net)
all_inputs = []
all_outputs = []
for op_id in sub_graph_op_indices:
all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs]
all_outputs += list(ssa[op_id][1]) # ssa output won't repeat
# for versioned blobs, external inputs are just those blob in all_inputs
# but not in all_outputs
ext_inputs = [inp for inp in all_inputs if inp not in all_outputs]
# external outputs are essentially outputs of this subgraph that are used
# outside of this sub-graph (including predict_net.external_output)
all_other_inputs = sum(
(ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices),
[(outp, versions[outp]) for outp in predict_net.external_output],
)
ext_outputs = [outp for outp in all_outputs if outp in set(all_other_inputs)]
return ext_inputs, ext_outputs
class DiGraph:
"""A DAG representation of caffe2 graph, each vertice is a versioned blob."""
def __init__(self):
self.vertices = set()
self.graph = collections.defaultdict(list)
def add_edge(self, u, v):
self.graph[u].append(v)
self.vertices.add(u)
self.vertices.add(v)
# grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/
def get_all_paths(self, s, d):
visited = {k: False for k in self.vertices}
path = []
all_paths = []
def _get_all_paths_util(graph, u, d, visited, path):
visited[u] = True
path.append(u)
if u == d:
all_paths.append(copy.deepcopy(path))
else:
for i in graph[u]:
if not visited[i]:
_get_all_paths_util(graph, i, d, visited, path)
path.pop()
visited[u] = False
_get_all_paths_util(self.graph, s, d, visited, path)
return all_paths
@staticmethod
def from_ssa(ssa):
graph = DiGraph()
for op_id in range(len(ssa)):
for inp in ssa[op_id][0]:
for outp in ssa[op_id][1]:
graph.add_edge(inp, outp)
return graph
def _get_dependency_chain(ssa, versioned_target, versioned_source):
"""
Return the index list of relevant operator to produce target blob from source blob,
if there's no dependency, return empty list.
"""
# finding all paths between nodes can be O(N!), thus we can only search
# in the subgraph using the op starting from the first consumer of source blob
# to the producer of the target blob.
consumer_map = get_consumer_map(ssa)
producer_map = get_producer_map(ssa)
start_op = min(x[0] for x in consumer_map[versioned_source]) - 15
end_op = (
producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op
)
sub_graph_ssa = ssa[start_op : end_op + 1]
if len(sub_graph_ssa) > 30:
logger.warning(
"Subgraph bebetween {} and {} is large (from op#{} to op#{}), it"
" might take non-trival time to find all paths between them.".format(
versioned_source, versioned_target, start_op, end_op
)
)
dag = DiGraph.from_ssa(sub_graph_ssa)
paths = dag.get_all_paths(versioned_source, versioned_target) # include two ends
ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths]
return sorted(set().union(*[set(ops) for ops in ops_in_paths]))
def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]:
"""
Idenfity the reshape sub-graph in a protobuf.
The reshape sub-graph is defined as matching the following pattern:
(input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -ββ
β-------------------------------------------> Reshape -> (output_blob)
Return:
List of sub-graphs, each sub-graph is represented as a list of indices
of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape]
"""
ssa, _ = core.get_ssa(predict_net)
ret = []
for i, op in enumerate(predict_net.op):
if op.type == "Reshape":
assert len(op.input) == 2
input_ssa = ssa[i][0]
data_source = input_ssa[0]
shape_source = input_ssa[1]
op_indices = _get_dependency_chain(ssa, shape_source, data_source)
ret.append(op_indices + [i])
return ret
def remove_reshape_for_fc(predict_net, params):
"""
In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape
a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping
doesn't work well with ONNX and Int8 tools, and cause using extra
ops (eg. ExpandDims) that might not be available on mobile.
Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape
after exporting ONNX model.
"""
from caffe2.python import core
# find all reshape sub-graph that can be removed, which is now all Reshape
# sub-graph whose output is only consumed by FC.
# TODO: to make it safer, we may need the actually value to better determine
# if a Reshape before FC is removable.
reshape_sub_graphs = identify_reshape_sub_graph(predict_net)
sub_graphs_to_remove = []
for reshape_sub_graph in reshape_sub_graphs:
reshape_op_id = reshape_sub_graph[-1]
assert predict_net.op[reshape_op_id].type == "Reshape"
ssa, _ = core.get_ssa(predict_net)
reshape_output = ssa[reshape_op_id][1][0]
consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]]
if all(predict_net.op[consumer].type == "FC" for consumer in consumers):
# safety check if the sub-graph is isolated, for this reshape sub-graph,
# it means it has one non-param external input and one external output.
ext_inputs, ext_outputs = get_sub_graph_external_input_output(
predict_net, reshape_sub_graph
)
non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1:
sub_graphs_to_remove.append(reshape_sub_graph)
# perform removing subgraph by:
# 1: rename the Reshape's output to its input, then the graph can be
# seen as in-place itentify, meaning whose external input/output are the same.
# 2: simply remove those ops.
remove_op_ids = []
params_to_remove = []
for sub_graph in sub_graphs_to_remove:
logger.info(
"Remove Reshape sub-graph:\n{}".format(
"".join(["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph])
)
)
reshape_op_id = sub_graph[-1]
new_reshap_output = predict_net.op[reshape_op_id].input[0]
rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output)
ext_inputs, ext_outputs = get_sub_graph_external_input_output(predict_net, sub_graph)
non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0]
params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0]
assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1
assert ext_outputs[0][0] == non_params_ext_inputs[0][0]
assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1
remove_op_ids.extend(sub_graph)
params_to_remove.extend(params_ext_inputs)
predict_net = copy.deepcopy(predict_net)
new_ops = [op for i, op in enumerate(predict_net.op) if i not in remove_op_ids]
del predict_net.op[:]
predict_net.op.extend(new_ops)
for versioned_params in params_to_remove:
name = versioned_params[0]
logger.info("Remove params: {} from init_net and predict_net.external_input".format(name))
del params[name]
predict_net.external_input.remove(name)
return predict_net, params
def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef):
"""
In-place fuse extra copy ops between cpu/gpu for the following case:
a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1
-CopyBToA> c2 -NextOp2-> d2
The fused network will look like:
a -NextOp1-> d1
-NextOp2-> d2
"""
_COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"]
def _fuse_once(predict_net):
ssa, blob_versions = core.get_ssa(predict_net)
consumer_map = get_consumer_map(ssa)
versioned_external_output = [
(name, blob_versions[name]) for name in predict_net.external_output
]
for op_id, op in enumerate(predict_net.op):
if op.type in _COPY_OPS:
fw_copy_versioned_output = ssa[op_id][1][0]
consumer_ids = [x[0] for x in consumer_map[fw_copy_versioned_output]]
reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)]
is_fusable = (
len(consumer_ids) > 0
and fw_copy_versioned_output not in versioned_external_output
and all(
predict_net.op[_op_id].type == reverse_op_type
and ssa[_op_id][1][0] not in versioned_external_output
for _op_id in consumer_ids
)
)
if is_fusable:
for rv_copy_op_id in consumer_ids:
# making each NextOp uses "a" directly and removing Copy ops
rs_copy_versioned_output = ssa[rv_copy_op_id][1][0]
next_op_id, inp_id = consumer_map[rs_copy_versioned_output][0]
predict_net.op[next_op_id].input[inp_id] = op.input[0]
# remove CopyOps
new_ops = [
op
for i, op in enumerate(predict_net.op)
if i != op_id and i not in consumer_ids
]
del predict_net.op[:]
predict_net.op.extend(new_ops)
return True
return False
# _fuse_once returns False is nothing can be fused
while _fuse_once(predict_net):
pass
def remove_dead_end_ops(net_def: caffe2_pb2.NetDef):
"""remove ops if its output is not used or not in external_output"""
ssa, versions = core.get_ssa(net_def)
versioned_external_output = [(name, versions[name]) for name in net_def.external_output]
consumer_map = get_consumer_map(ssa)
removed_op_ids = set()
def _is_dead_end(versioned_blob):
return not (
versioned_blob in versioned_external_output
or (
len(consumer_map[versioned_blob]) > 0
and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob])
)
)
for i, ssa_i in reversed(list(enumerate(ssa))):
versioned_outputs = ssa_i[1]
if all(_is_dead_end(outp) for outp in versioned_outputs):
removed_op_ids.add(i)
# simply removing those deadend ops should have no effect to external_output
new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids]
del net_def.op[:]
net_def.op.extend(new_ops)
|