Leffa / densepose /modeling /losses /cycle_shape2shape.py
franciszzj's picture
init code
b213d84
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import random
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import CfgNode
from densepose.structures.mesh import create_mesh
from .utils import sample_random_indices
class ShapeToShapeCycleLoss(nn.Module):
"""
Cycle Loss for Shapes.
Inspired by:
"Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes".
"""
def __init__(self, cfg: CfgNode):
super().__init__()
self.shape_names = list(cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS.keys())
self.all_shape_pairs = [
(x, y) for i, x in enumerate(self.shape_names) for y in self.shape_names[i + 1 :]
]
random.shuffle(self.all_shape_pairs)
self.cur_pos = 0
self.norm_p = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.NORM_P
self.temperature = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.TEMPERATURE
self.max_num_vertices = (
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.MAX_NUM_VERTICES
)
def _sample_random_pair(self) -> Tuple[str, str]:
"""
Produce a random pair of different mesh names
Return:
tuple(str, str): a pair of different mesh names
"""
if self.cur_pos >= len(self.all_shape_pairs):
random.shuffle(self.all_shape_pairs)
self.cur_pos = 0
shape_pair = self.all_shape_pairs[self.cur_pos]
self.cur_pos += 1
return shape_pair
def forward(self, embedder: nn.Module):
"""
Do a forward pass with a random pair (src, dst) pair of shapes
Args:
embedder (nn.Module): module that computes vertex embeddings for different meshes
"""
src_mesh_name, dst_mesh_name = self._sample_random_pair()
return self._forward_one_pair(embedder, src_mesh_name, dst_mesh_name)
def fake_value(self, embedder: nn.Module):
losses = []
for mesh_name in embedder.mesh_names:
losses.append(embedder(mesh_name).sum() * 0)
return torch.mean(torch.stack(losses))
def _get_embeddings_and_geodists_for_mesh(
self, embedder: nn.Module, mesh_name: str
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Produces embeddings and geodesic distance tensors for a given mesh. May subsample
the mesh, if it contains too many vertices (controlled by
SHAPE_CYCLE_LOSS_MAX_NUM_VERTICES parameter).
Args:
embedder (nn.Module): module that computes embeddings for mesh vertices
mesh_name (str): mesh name
Return:
embeddings (torch.Tensor of size [N, D]): embeddings for selected mesh
vertices (N = number of selected vertices, D = embedding space dim)
geodists (torch.Tensor of size [N, N]): geodesic distances for the selected
mesh vertices (N = number of selected vertices)
"""
embeddings = embedder(mesh_name)
indices = sample_random_indices(
embeddings.shape[0], self.max_num_vertices, embeddings.device
)
mesh = create_mesh(mesh_name, embeddings.device)
geodists = mesh.geodists
if indices is not None:
embeddings = embeddings[indices]
geodists = geodists[torch.meshgrid(indices, indices)]
return embeddings, geodists
def _forward_one_pair(
self, embedder: nn.Module, mesh_name_1: str, mesh_name_2: str
) -> torch.Tensor:
"""
Do a forward pass with a selected pair of meshes
Args:
embedder (nn.Module): module that computes vertex embeddings for different meshes
mesh_name_1 (str): first mesh name
mesh_name_2 (str): second mesh name
Return:
Tensor containing the loss value
"""
embeddings_1, geodists_1 = self._get_embeddings_and_geodists_for_mesh(embedder, mesh_name_1)
embeddings_2, geodists_2 = self._get_embeddings_and_geodists_for_mesh(embedder, mesh_name_2)
sim_matrix_12 = embeddings_1.mm(embeddings_2.T)
c_12 = F.softmax(sim_matrix_12 / self.temperature, dim=1)
c_21 = F.softmax(sim_matrix_12.T / self.temperature, dim=1)
c_11 = c_12.mm(c_21)
c_22 = c_21.mm(c_12)
loss_cycle_11 = torch.norm(geodists_1 * c_11, p=self.norm_p)
loss_cycle_22 = torch.norm(geodists_2 * c_22, p=self.norm_p)
return loss_cycle_11 + loss_cycle_22